EX-9392B-ATOM

TOPSCCC Intel® AtomTM Fanless Embedded System RoHS Compliant, Dual GbE LAN, COM Ports, USB 2.0

User Manual

Revision

Date	Version	Changes
10 July, 2009	1.02	Modified COM2 information
17 March, 2009	1.01	Changed model name
10 February, 2009	1.00	Initial release

Copyright

COPYRIGHT NOTICE

The information in this document is subject to change without prior notice in order to improve reliability, design and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

TRADEMARKS

All registered trademarks and product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective owners.

Packing List

NOTF:

If any of the components listed in the checklist below are missing, please do not proceed with the installation. Contact the TOPSCCC reseller or vendor you purchased the EX-9392B from or contact an TOPSCCC sales representative directly. To contact an TOPSCCC sales representative, please send an email to sales@topsccc.com

The items listed below should all be included in the EX-9392B package.

- 1 x EX-9392B embedded system
- 2 x Mounting brackets
- 1 x Screw set
- 1 x Thermal pad for HDD
- 1 x Mini jumper set
- 1 x QIG
- 1 x Driver and manual CD
- 1 x 2 dbi wireless antenna (for wireless models only)
- 1 x Power cord (optional for WD models)
- 1 x Power Adaptor (optional for WD models)

Table of Contents

1	INTRODUCTION	1
	1.1 EX-9392B EMBEDDED SYSTEM OVERVIEW	2
	1.1.1 EX-9392B Benefits	2
	1.1.2 EX-9392B Features	2
	1.2 EX-9392B Model Variations	3
	1.3 TECHNICAL SPECIFICATIONS	4
	1.4 Power Module Specifications	6
	1.4.1 Power Module Options	6
	1.4.2 Power Module Specifications	6
	1.5 Power Adapter	7
2	MECHANICAL DESCRIPTION	9
	2.1 EX-9392B MECHANICAL OVERVIEW	10
	2.2 Physical Dimensions	10
	2.2.1 EX-9392B Dimensions	. 10
	2.2.2 Motherboard Dimensions	11
	2.2.3 Power Module Dimensions	. 12
	2.3 External Overview	13
	2.3.1 Front Panel	. 13
	2.3.2 Rear Panel	. 13
	2.3.3 Bottom Surface	. 14
	2.4 Internal Overview	15
3	SYSTEM COMPONENTS	17
	3.1 EX-9392B EMBEDDED SYSTEM MOTHERBOARD	18
	3.1.1 EX-9392B Embedded System Motherboard	18
	3.1.2 EXPERT Motherboard Overview	. 18
	3.1.3 CPU Support	. 19
	3.2 Peripheral Interface Connectors	19
	3.2.1 Peripheral Interface Connectors	. 19
	3.3 Internal Peripheral Connectors	20

	3.3.1 ATX Power Connector	20
	3.3.2 ATX Power Supply Enable Connector	21
	3.3.3 Audio Connector (10-pin)	22
	3.3.4 CompactFlash® Socket	23
	3.3.5 LED Connector	25
	3.3.6 PCIe Mini Card Slot	26
	3.3.7 Power Button Connector	28
	3.3.8 Reset Button Connector	28
	3.3.9 SATA Drive Connectors	29
	3.3.10 Serial Port Connector (COM3, COM4, COM5 and COM6)	30
	3.3.11 Serial Port Connector (COM 2)	32
	3.3.12 USB Connectors (Internal)	33
	3.4 EXTERNAL PERIPHERAL INTERFACE CONNECTOR PANEL	34
	3.4.1 LAN Connectors	34
	3.4.2 Serial Port Connector (COM1)	35
	3.4.3 USB Connectors	36
	3.4.4 VGA Connector	37
	3.5 EXPERT MOTHERBOARD ON-BOARD JUMPERS	38
	3.5.1 CF Card Setup	39
	3.5.2 Clear CMOS Jumper	39
	3.5.3 COM 2 Function Select Jumper	41
	3.6 CONNECTOR MAPPINGS	42
	3.6.1 Power Connector	42
	3.6.2 ATX Mode Connector	42
4	INSTALLATION	43
	4.1 Anti-static Precautions	44
	4.2 Installation Procedure	44
	4.2.1 Installation Procedure Overview	44
	4.2.2 Unpacking	45
	4.2.3 Bottom Surface Removal	47
	4.2.4 Configure the Jumper Settings	47
	4.2.5 Hard Drive Installation	48
	4.2.6 Mounting the System with Mounting Brackets	50
	4.2.7 Mounting the System with Wall Mount Kit	51

	4.2.8 DIN Mounting	53
	4.2.9 Wireless Antenna Installation (Wireless Models Only)	55
	4.2.10 Cable Connections	56
	4.3 POWER-ON PROCEDURE	56
	4.3.1 Installation Checklist	56
	4.3.2 Terminal Block Pinouts	57
	4.3.3 Power-on Procedure	57
5	BIOS SCREENS	59
	5.1 Introduction	60
	5.1.1 Starting Setup	60
	5.1.2 Using Setup	60
	5.1.3 Getting Help	61
	5.1.4 Unable to Reboot After Configuration Changes	61
	5.1.5 BIOS Menu Bar	61
	5.2 Main	62
	5.3 ADVANCED	63
	5.3.1 CPU Configuration	64
	5.3.2 IDE Configuration	65
	5.3.2.1 IDE Master, IDE Slave	67
	5.3.3 Super IO Configuration	73
	5.3.4 Hardware Health Configuration	77
	5.3.5 Power Configuration	81
	5.3.5.1 ACPI configuration	81
	5.3.5.2 APM Configuration	82
	5.3.6 Remote Configuration	85
	5.3.7 USB Configuration	89
	5.4 PCI/PNP	91
	5.5 Воот	94
	5.5.1 Boot Settings Configuration	94
	5.5.2 Boot Device Priority	97
	5.6 Security	98
	5.7 Chipset	99
	5.7.1 North Bridge Chipset Configuration	100
	5.7.2 SouthBridge Configuration	103

	5.8 Exit	104
6	SOFTWARE DRIVERS	106
	6.1 AVAILABLE SOFTWARE DRIVERS	107
	6.2 Starting the Driver Program	107
	6.3 CHIPSET DRIVER INSTALLATION	108
	6.4 VGA DRIVER INSTALLATION	113
	6.5 LAN DRIVER INSTALLATION	118
	6.6 AUDIO DRIVER INSTALLATION	121
7	TROUBLESHOOTING AND MAINTENANCE	126
	7.1 EX-9392B SYSTEM MAINTENANCE OVERVIEW	127
	7.2 System Troubleshooting	127
	7.2.1 The System Doesn't Turn On	127
	7.2.2 The System Doesn't Boot Up	
	7.2.3 More Troubleshooting	
	7.3 COMPONENT REPLACEMENT PROCEDURE	129
	7.3.1 SO-DIMM Replacement	
A	SAFETY PRECAUTIONS	132
	A.1 SAFETY PRECAUTIONS	133
	A.1.1 General Safety Precautions	133
	A.1.2 Anti-static Precautions	134
	A.2 MAINTENANCE AND CLEANING PRECAUTIONS	134
	A.2.1 Maintenance and Cleaning	
	A.2.2 Cleaning Tools	
В	TOPSCCC EMBEDDED SYSTEM SERIES	136
	B.1 TOPSCCC EMBEDDED SYSTEM SERIES	137
	B.1.1 Overview	137
	B.1.2 TOPSCCC Embedded System Series	137
	B.1.3 TOPSCCC Embedded System Series Variations	
	B.2 EMBEDDED SYSTEM SOLUTIONS	
	B.2.1 AMD [®] Geode [®] LX800 500MHz Solutions	
	B.2.2 AMD® Geode® GX466 333MHz Solutions	
	B.2.3 VIA® LUKE® 1GHz Solutions	

	B.2.4 VIA® MARK® 800MHz Solutions	140
	B.2.5 Intel [®] Celeron [®] M 1 GHz Solutions	140
	B.2.6 Intel [®] Celeron [®] M 1.5GHz Solutions	141
	B.2.7 Intel® Pentium® M 1.6GHz Solutions	142
	B.2.8 Intel [®] Socket 479 Pentium [®] /Celeron [®] M 2GHz Solutions	142
	B.2.9 LGA 775 Intel [®] Pentium [®] 4/ Pentium [®] D Solutions	143
	B.2.10 Intel® Socket 479 Core Duo/Solo Solutions	144
C	BIOS MENU OPTIONS	145
(C.1 BIOS CONFIGURATION OPTIONS	146
D	WATCHDOG TIMER	149

List of Figures

Figure 1-1: EX-9392B Series Embedded System2
Figure 1-2: Power Adapter7
Figure 2-1: EX-9392B Dimensions (mm)11
Figure 2-2: EXPERT SBC Dimensions (mm)12
Figure 2-3: Power Module Dimensions (mm)12
Figure 2-4: EX-9392B Front Panel13
Figure 2-5: EX-9392B Rear Panel14
Figure 2-6: Bottom Surface15
Figure 2-7: Internal Overview16
Figure 3-1: EXPERT Jumper and Connector Locations18
Figure 3-2: ATX Power Connector Location21
Figure 3-3: ATX Power Supply Enable Connector Location22
Figure 3-4: Audio Connector Pinouts (10-pin)23
Figure 3-5: CF Card Socket Location24
Figure 3-6: LED Connector Locations25
Figure 3-7: PCle Mini Card Slot Location26
Figure 3-8: Power Button Connector Location28
Figure 3-9: Reset Button Connector Locations29
Figure 3-10: SATA Drive Connector Locations30
Figure 3-11: COM3 to COM6 Connector Pinout Locations31
Figure 3-12: Serial Port Connector Location32
Figure 3-13: USB Connector Pinout Locations33
Figure 3-14: EX-9392B External Peripheral Interface Connector34
Figure 3-15: RJ-45 Ethernet Connector35
Figure 3-16: COM1 Pinout Locations36
Figure 3-17: VGA Connector37
Figure 3-18: Jumpers38
Figure 3-19: CF Card Setup Jumper Location 39

Figure 3-20: Clear CMOS Jumper	40
Figure 3-21: COM 2 Function Select Jumper Location	41
Figure 4-1: Bottom Surface Retention Screws	47
Figure 4-2: Hard Drive Bracket	48
Figure 4-3:HDD Bracket Retention Screws	49
Figure 4-4: HDD Retention Screws	49
Figure 4-5: HDD Thermal Pad	50
Figure 4-6: Mounting Bracket Retention Screws	51
Figure 4-7: Wall-mounting Bracket	52
Figure 4-8: Mount the Embedded System	53
Figure 4-9: DIN Rail Mounting Bracket	54
Figure 4-10: Screw Locations	54
Figure 4-11: Mounting the DIN RAIL	55
Figure 4-12: Secure the Assembly to the DIN Rail	55
Figure 4-13: Wireless Antenna Installation	56
Figure 4-14: Terminal Block Pinouts	57
· ·9·····	
Figure 4-15: Power Button	
Figure 4-15: Power Button	58
Figure 4-15: Power Button Figure 6-1: Drivers 108	109
Figure 4-15: Power Button	109
Figure 4-15: Power Button	109
Figure 4-15: Power Button	
Figure 4-15: Power Button	58
Figure 4-15: Power Button	58

Figure 6-16: LAN Driver Welcome Screen
Figure 6-17: LAN Driver Installation
Figure 6-18: LAN Driver Installation Complete
Figure 6-19: Audio Driver Options
Figure 6-20: AC'97 Driver Installation File Extraction
Figure 6-21: AC'97 Driver Installation Welcome Screen
Figure 6-22: AC'97 Driver Installation Verification
Figure 6-23: AC'97 Driver Installation
Figure 6-24: AC'97 Driver Installation Complete
Figure 7-1: SO-DIMM Cover Plate
Figure 7-2: SO-DIMM Installation

List of Tables

Table 1-1: Model Variations	3
Table 1-2: Technical Specifications	5
Table 1-3: EX-9392B Power Module Options	6
Table 1-4: DC-to-DC Power Module Specifications	7
Table 1-5: Power Adapter Specifications	8
Table 3-1: Peripheral Interface Connectors	20
Table 3-2: ATX Power Connector Pinouts	21
Table 3-3: ATX Power Supply Enable Connector Pinouts	22
Table 3-4: Audio Connector Pinouts (10-pin)	23
Table 3-5: CF Card Socket Pinouts	25
Table 3-6: LED Connector Pinouts	26
Table 3-7: PCIe Mini Card Slot Pinouts	27
Table 3-8: Power Button Connector Pinouts	28
Table 3-9: Reset Button Connector Pinouts	29
Table 3-10: SATA Drive Connector Pinouts	30
Table 3-11: COM3 to COM6 Connector Pinouts	32
Table 3-12: Serial Port Connector Pinouts	33
Table 3-13: USB Port Connector Pinouts	.34
Table 3-14: LAN Pinouts	35
Table 3-15: RJ-45 Ethernet Connector LEDs	35
Table 3-16: RS-232 Serial Port (COM 1) Pinouts	36
Table 3-17: USB Port Pinouts	37
Table 3-18: VGA Connector Pinouts	38
Table 3-19: Jumpers	38
Table 3-20: CF Card Setup Jumper Settings	39
Table 3-21: Clear CMOS Jumper Settings	40
Table 3-22: COM 2 Function Select Jumper Settings	.41
Table 3-23: Motherboard Power Connector Mapping	42

Table 3-24: Motherboard Power Connector Mapping	42
Table 4-1: Package List Contents	46
Table 5-1: BIOS Navigation Keys	61

List of BIOS Menus

Menu 1: Main	62	
Menu 2: Advanced	64	
Menu 3: CPU Confi	guration	64
Menu 4: IDE Config	guration	65
Menu 5: IDE Maste	r and IDE Slave Configuration	67
Menu 6: Super IO C	Configuration	73
Menu 7: Hardware	Health Configuration	77
Menu 8: Power Cor	nfiguration	81
Menu 9: ACPI Conf	iguration	82
Menu 10:Advanced	Power Management Configuration	83
Menu 11: Remote A	Access Configuration [Advanced]	86
Menu 12: USB Con	figuration	90
Menu 13: PCI/PnP (Configuration	92
Menu 14: Boot	94	
Menu 15: Boot Sett	ings Configuration	95
Menu 16: Boot Dev	ice Priority Settings	97
Menu 17: Security	98	
Menu 18: Chipset	99	
Menu 19:North Brid	dge Chipset Configuration	100
Menu 20:SouthBrid	lge Chipset Configuration	103
Manu 21.Evit	104	

Chapter 1

Introduction

1.1 EX-9392B Embedded System Overview

Figure 1-1: EX-9392B Series Embedded System

There are four EXPERT Intel® Atom™ based embedded solutions in the EX-9392B series. All fanless motherboards have been optimized for multimedia applications that require minimum installation space. The EXPERT motherboard supports a full range of functions for an AT/ATX-compatible industrial computer. EX-9392B embedded subsystems are all capable of supporting one 2.5" SATA hard disk drive. The EX-9392B-W models also have a built-in 802.11 b/g wireless module.

1.1.1 EX-9392B Benefits

The EX-9392B embedded system has the following benefits:

- Easy installation saves installation time
- Complete integration saves solution development time and cost
- Secure storage with one SATA hard drive supported
- Compact size saves space
- Powerful preinstalled Intel® Atom™ N270 CPU and motherboard ensures rigorous processing needs can be met

1.1.2 EX-9392B Features

The EX-9392B has the following features

- RoHS compliant design
- Fanless system

- Built-in DC-to-DC power converter
- 1.6 GHz Intel® Atom™ N270 CPU supported
- Dual GbE LAN for high speed network applications
- One SATA hard drive supported
- Wall mount and DIN mount supported.

1.2 EX-9392B Model Variations

There are four models in the EX-9392B embedded system series. The EX-9392B series supports 12V DC input and the EX-9392BWD series supports 9V~36V DC input. The four models are listed in **Table 1-1** below.

EX-9392B	СРИ	Memory	Power	Wireless
-R10/1GB	Intel® Atom™ N270	1 GB DDR	12V DC input	No
			(55 W adaptor)	
-W-R10/1GB	Intel® Atom™ N270	1 GB DDR	12V DC input	Yes
			(55 W adaptor)	
EX-9392BWD	CPU	Memory	Power	Wireless
EX-9392BWD -R10/1GB	CPU Intel® Atom™ N270	Memory 1 GB DDR	Power 9V~36V DC	Wireless No
20002002				
20002002			9V~36V DC	

Table 1-1: Model Variations

1.3 Technical Specifications

The specifications for the Intel based embedded systems are listed below.

	EX-9392B	
СРИ	Preinstalled 1.6 GHz Intel® Atom™ Processor N270 with a	
	533 MHz FSB	
System Chipset	Intel® 945GSE + ICH7-M	
System Memory	Preinstalled 1.0 GB DDR2 SDRAM SO-DIMM (system max. 2 GB)	
Ethernet	Dual Realtek RTL8111CP GbE controllers	
	Buit-in 802.11 b/g wireless module for the wireless models	
Display	CRT integrated in Intel® 945GSE	
USB	Four USB 2.0 ports	
Serial Port	Six RS-232	
Audio	One audio out	
Storage	One 2.5" SATA hard drive supported	
	One internal CF card slot	
Chassis Construction	Aluminum Alloy	
Power Supply	Internal DC-to-DC power converter, input voltage:	
	12V DC or 9V – 36V (WD series models)	
	External power adapter, input voltage:	
	90V AC ~ 264V AC @ 47Hz ~ 63Hz, 55 W	
Power Consumption	19 W	
Operating Shock	Half-sine wave shock 3G; 11ms; 3 shocks per axis	
Operating Vibration	MIL-STD-810F 514.5C-1 (HDD)	
	MIL-STD-810F 514.5C-2 (CF)	

Operating temperature	-10°C ~ 50°C with HDD	
	-10°C ∼ 60°C with CF card	
Color	Black	
Mounting	DIN mount	
	VESA MIS-D 100 wall mount	
Weight (Net/Gross)	2.1 kg/3.9 kg	
Dimensions (D x W x H)	132 mm x 229 mm x 64 mm	
EMC	FCC Class A, CE	

Table 1-2: Technical Specifications

1.4 Power Module Specifications

1.4.1 Power Module Options

The EX-9392B embedded system supports either a 12V DC input or a 9V~36V DC input. The input support depends on the power module installed in the system. The two power modules are listed in **Table 1-3**:

Embedded System	Power Module	DC Input
EX-9392B Series	IDD-12250A	12V DC input
EX-9392BWD Series	IDD-936260A	9V~36V DC input

Table 1-3: EX-9392B Power Module Options

1.4.2 Power Module Specifications

The specifications for the IDD-12250A and IDD-936260A are shown in **Table 1-4**.

Model Name:		IDD-12250A	IDD-936260A		
Input		12VDC	9VDC~36VDC		
0	utput:				
	12V	5A (pass thru.)	3A (Max.)		
	5V	10A (Max.)	10A (Max.)		
	5VSB	0.5A (Max.)	0.5A (Max.)		
Max. Total Output:		50W+60W (12V pass thru.)	60W		
P	Performance Characteristics:				
Noise & Ripple:		< 240mV	< 240mV		
	Line Regulation:	< 20mV	< 20mV		

	Load Regulation	<60mV	<60mV
	Efficiency:	Up to 90%	Up to 90%
Di	mensions:	40mm x 100mm	40mm x 100mm
W	eight:	46g	58g
0	perating Temperature:	-40°C~85°C	-40°C~85°C

Table 1-4: DC-to-DC Power Module Specifications

1.5 Power Adapter

The EX-9392B series models are shipped with a 55 W power adapter.

Figure 1-2: Power Adapter

The specifications for the adapter are listed in **Table 1-5**:

	Nominal	12.0V
	Regulation	11.52V – 12.48V
Output	Ripple/Noise	120mV
	Min.	0A
	Max.	4.58A

	Short Circuit	Output can be shorted without damage and		
Protection	S.I.O.I. O.I. Out	auto-recovery		
	Over-Voltage	Upper Trip Limit:	15V+/-1.5V	
Time	Hold Up	10ms		
	Min.	90V		
	Nominal	115V ~ 230V		
	Max.	264V		
Input	Frequency	47Hz ~ 63Hz		
	Inrush Current	80A Max. (cold start at 25°C)		
	Steady Current	1.3Arms Max.		
	Efficiency	80% (typical)		
	Temperature	Operating	0°C ~ 40°C	
	Temperature	Storage	-25°C ~ 65°C	
	Relative Humidity	Operating (non-condensing)	0% ~ 95%	
	Relative Humaity	Storage (non-condensing)	0% ~ 95%	
Environment		Operating: 1G, 5Hz~500Hz, random vibration,		
Liviioiiiicii	Vibration	30mins/axis, 3 direction		
		Storage: 2G, 5Hz~500Hz, random vibration,		
		30mins/axis, 3 direction		
	Shock	Operating: 10G, 11ms, Half-si	Operating: 10G, 11ms, Half-sine wave	
	OHOUR	Storage: 20G, 11ms, Half-sine wave		
Reliability	MTBF	100,000 hours of continuous operation at 25°C 0.5mA max @264V		
remainity	Leakage Current			

Table 1-5: Power Adapter Specifications

Chapter 2

Mechanical Description

2.1 EX-9392B Mechanical Overview

The EX-9392B RoHS compliant, Intel® Atom™ fanless embedded system features

industrial grade components that offer longer operating life, high shock/vibration

resistance and endurance over a wide temperature range. The EX-9392B combines these

features in an aluminum enclosure designed for space critical applications that require low

power consumption. Featuring two LAN, four USB, six serial communication ports, as well

as audio, and VGA, the EX-9392B offers system integrators and developers the best

selection of robust and high performance computing system platforms. An internal bracket

supports one 2.5" SATA hard drives.

2.2 Physical Dimensions

The physical dimensions of the EX-9392B embedded systems are listed below.

2.2.1 EX-9392B Dimensions

The dimensions of the EX-9392B are listed below and shown in **Figure 2-1**.

■ Height: 64.00 mm

Width: 229.00 mm

■ Length: 132.00 mm

Page 10

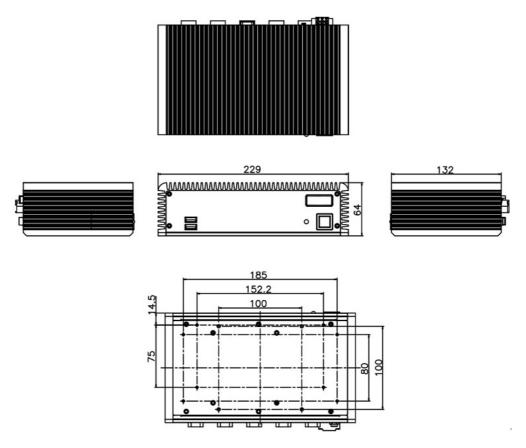


Figure 2-1: EX-9392B Dimensions (mm)

2.2.2 Motherboard Dimensions

The EXPERT series dimension are listed below and shown in Figure 2-2.

■ Length: 145.00 mm
■ Width: 102.00 mm

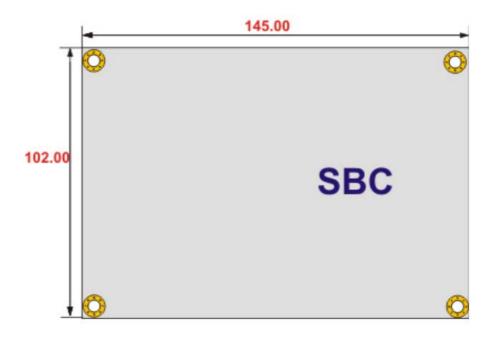


Figure 2-2: EXPERT SBC Dimensions (mm)

2.2.3 Power Module Dimensions

The power module dimensions are listed below and shown in Figure 2-3.

■ Length: 100.00 mm
■ Width: 40.00 mm

Figure 2-3: Power Module Dimensions (mm)

2.3 External Overview

2.3.1 Front Panel

The EX-9392B front panel contains:

- 2 x USB port connectors
- 1 x HDD LED indicator
- 1 x Power button

An overview of the front panel is shown in **Figure 2-4** below.

Figure 2-4: EX-9392B Front Panel

2.3.2 Rear Panel

The rear panel of the EX-9392B provides access to the following external I/O connectors.

- 2 x USB port connectors
- 2 x RJ-45 Ethernet connector
- 1 x VGA connector
- 6 x RS-232 serial ports
- 1 x Speaker out
- 1 x 3-pin power terminal block
- 1 x 12V DC power jack

■ 1 x Wireless antenna connector (for wireless models only)

An overview of the rear panel is shown in Figure 2-5.

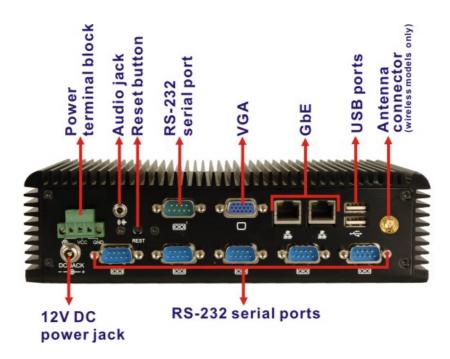


Figure 2-5: EX-9392B Rear Panel

2.3.3 Bottom Surface

WARNING:

Never remove the bottom access panel from the chassis while power is still being fed into the system. Before removing the bottom access panel, make sure the system has been turned off and all power connectors unplugged.

The bottom surface of the EX-9392B contains the retention screw holes for the VESA MIS-D 100 wall-mount kit, two-side mounting brackets and DIN mount bracket.

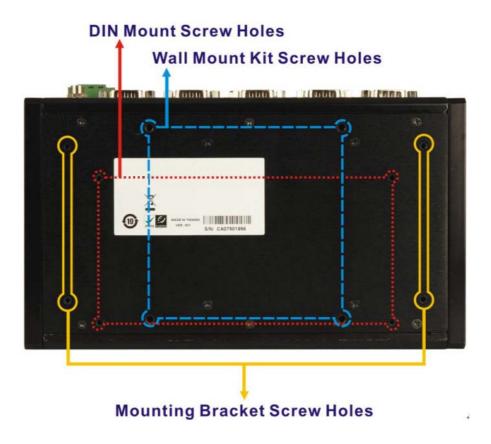


Figure 2-6: Bottom Surface

2.4 Internal Overview

The EX-9392B internal components are listed below:

- 1 x TOPSCCC EXPERT motherboard (preinstalled)
- 1 x TOPSCCC power module (preinstalled)
- 1 x SO-DIMM module (preinstalled)
- 1 x Hard drive bracket and SATA cable support one SATA hard disk

All the components are accessed by removing the bottom surface.

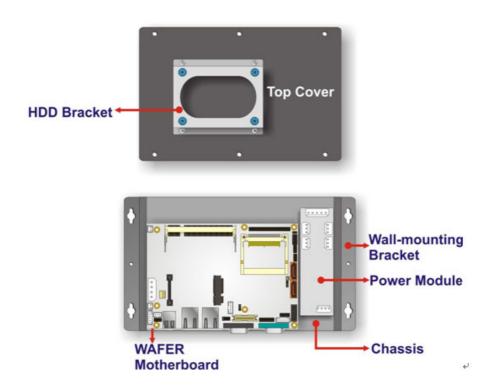


Figure 2-7: Internal Overview

Chapter 3

System Components

3.1 EX-9392B Embedded System Motherboard

3.1.1 EX-9392B Embedded System Motherboard

NOTE:

The jumpers and connectors shown in the section below are those jumpers and connectors that are relevant to the configuration and installation of the embedded system. For a complete list of jumpers and connectors on the EXPERT motherboard, please refer to the EXPERT user manual.

The EX-9392B models have a EXPERT motherboard installed in the system. The following sections describe the relevant connectors and jumpers on the motherboard.

3.1.2 EXPERT Motherboard Overview

The locations of the EXPERT jumpers and connectors used on the EX-9392B are shown in **Figure 3-1** below.

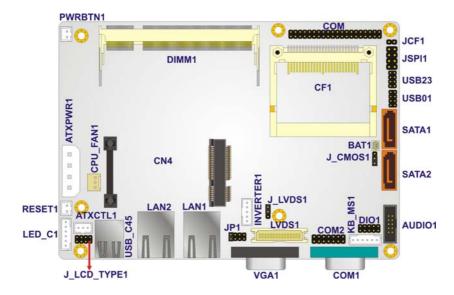


Figure 3-1: EXPERT Jumper and Connector Locations

3.1.3 CPU Support

NOTE:

The EX-9392B series has a preinstalled Intel® Atom™ 1.6 GHz CPU on-board. If the CPU fails, the motherboard has to be replaced. Please contact the TOPSCCC reseller or vendor you purchased the EX-9392B from or contact an TOPSCCC sales representative directly. To contact an TOPSCCC sales representative, please send an email to sales@topsccc.com

The EX-9392B comes with an embedded 45 nm 1.60 GHz Intel® Atom™ processor N270. The processor supports a 533 MHz FSB and has a 1.6 GHz 512 KB L2 cache. The low power processor has a maximum power of 2.5 W.

3.2 Peripheral Interface Connectors

Section 3.2.1 lists all the peripheral interface connectors seen in Section 3.1.2.

3.2.1 Peripheral Interface Connectors

Table 3-1 shows a list of the peripheral interface connectors on the EXPERT that are used for the EX-9392B. Detailed descriptions of these connectors can be found in **Section 3.3**.

Connector	Туре	Label
Audio connector	10-pin header	AUDIO1
ATX enable connector	3-pin EXPERT	ATXCTL1
ATX power connector	4-pin ATX	ATXPWR1
CompactFlash® socket	50-pin CF socket	CF1
LED connector	6-pin header	LED_C1
PCle Mini Card slot	PCIe Mini Slot	CN4

Power Button	2-pin EXPERT	PWRBTN1
Reset button connector	2-pin header	RESET1
Serial ATA (SATA) drive connectors	7-pin SATA	SATA1
RS-232 serial port connector (COM3 – COM6)	40-pin header	СОМ
RS-232 serial port connector	14-pin header	COM2
USB 2.0 connector	8-pin header	USB01

Table 3-1: Peripheral Interface Connectors

3.3 Internal Peripheral Connectors

Internal peripheral connectors are found on the motherboard and are only accessible when the motherboard is outside of the chassis. This section has complete descriptions of the internal, peripheral connectors on the EXPERT that are used for the EX-9392B.

3.3.1 ATX Power Connector

CN Label: ATXPWR1

CN Type: 4-pin AT power connector (1x4)

CN Location: See Figure 3-2

CN Pinouts: See **Table 3-2**

The 4-pin ATX power connector is connected to a DC-DC power module.

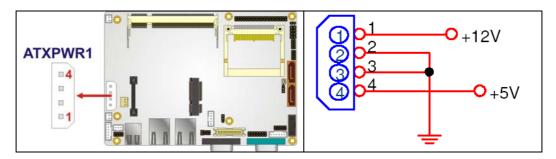


Figure 3-2: ATX Power Connector Location

PIN NO.	DESCRIPTION
1	+12V
2	GND
3	GND
4	+5V

Table 3-2: ATX Power Connector Pinouts

3.3.2 ATX Power Supply Enable Connector

CN Label: ATXCTL1

CN Type: 3-pin EXPERT (1x3)

CN Location: See Figure 3-3

CN Pinouts: See Table 3-3

The ATX power supply enable connector is connected to the ATX mode connector on the power module to enable the EX-9392B to be connected to an ATX power supply.

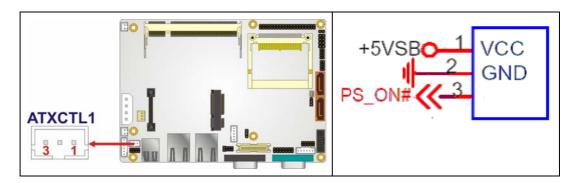


Figure 3-3: ATX Power Supply Enable Connector Location

PIN NO.	DESCRIPTION
1	+5V Standby
2	GND
3	PS-ON

Table 3-3: ATX Power Supply Enable Connector Pinouts

3.3.3 Audio Connector (10-pin)

CN Label: AUDIO1

CN Type: 10-pin header

CN Location: See Figure 3-4

CN Pinouts: See Table 3-4

The 10-pin audio connector is interfaced to an audio line-out connector and provides output of audio signals from the system.



Figure 3-4: Audio Connector Pinouts (10-pin)

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	Line out R	2	Line in R
3	GND	4	GND
5	Line out L	6	Line in L
7	GND	8	GND
9	MIC in	10	Mic in

Table 3-4: Audio Connector Pinouts (10-pin)

3.3.4 CompactFlash® Socket

CN Label: CF1

CN Type: 50-pin header (2x25)

CN Location: See Figure 3-5

CN Pinouts: See Table 3-5

A CF Type I or Type II memory card is inserted to the CF socket on the solder side of the EX-9392B.

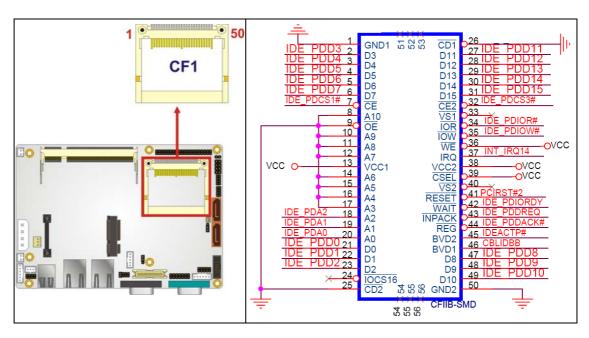


Figure 3-5: CF Card Socket Location

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	GROUND	26	VCC-IN CHECK1
2	DATA 3	27	DATA 11
3	DATA 4	28	DATA 12
4	DATA 5	29	DATA 13
5	DATA 6	30	DATA 14
6	DATA 7	31	DATA 15
7	HDC_CSO#	32	HDC_CS1
8	GROUND	33	N/C
9	GROUND	34	IOR#
10	GROUND	35	IOW#
11	GROUND	36	vcc_сом
12	GROUND	37	IRQ14
13	vcc_сом	38	VCC_COM
14	GROUND	39	CSEL
15	GROUND	40	N/C
16	GROUND	41	HDD_RESET

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
17	GROUND	42	IORDY
18	SA2	43	SDREQ
19	SA1	44	SDACK#
20	SAO	45	HDD_ACTIVE#
21	DATA 0	46	66DET
22	DATA 1	47	DATA 8
23	DATA 2	48	DATA 9
24	N/C	49	DATA 10
25	VCC-IN CHECK2	50	GROUND

Table 3-5: CF Card Socket Pinouts

3.3.5 LED Connector

CN Label: LED_C1

CN Type: 6-pin EXPERT (1x6)

CN Location: See Figure 3-6

CN Pinouts: See Table 3-6

The LED connector connects to an HDD indicator LED and a power LED on the system chassis to inform the user about HDD activity and the power on/off status of the system.

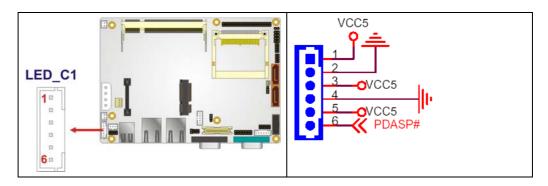


Figure 3-6: LED Connector Locations

PIN NO.	DESCRIPTION
1	+5V
2	GND
3	Power LED+
4	Power LED-
5	HDD LED+
6	HDD LED-

Table 3-6: LED Connector Pinouts

3.3.6 PCle Mini Card Slot

CN Label: CN4

CN Type: 52-pin Mini PCle Card Slot

CN Location: See Figure 3-7

CN Pinouts: See Table 3-7

The PCIe mini card slot enables a PCIe mini card expansion module to be connected to the board. Cards supported include among others wireless LAN (WLAN) cards.

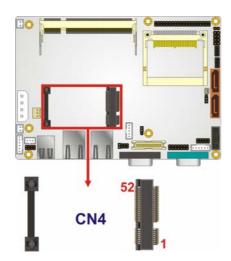


Figure 3-7: PCle Mini Card Slot Location

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	PCIE_WAKE#	2	VCC3
3	N/C	4	GND
5	N/C	6	1.5V
7	CLKREQ#	8	LFRAME#
9	GND	10	LAD3
11	CLK-	12	LAD2
13	CLK+	14	LAD1
15	GND	16	LADO
17	PCIRST#	18	GND
19	LPC	20	VCC3
21	GND	22	PCIRST#
23	PERN2	24	3VDual
25	PERP2	26	GND
27	GND	28	1.5V
29	GND	30	SMBCLK
31	PETN2	32	SMBDATA
33	PETP2	34	GND
35	GND	36	USBD-
37	N/C	38	USBD+
39	N/C	40	GND
41	N/C	42	N/C
43	N/C	44	RF_LINK#
45	N/C	46	BLUELED#
47	N/C	48	1.5V
49	N/C	50	GND
51	N/C	52	VCC3

Table 3-7: PCIe Mini Card Slot Pinouts

3.3.7 Power Button Connector

CN Label: PWRBTN1

CN Type: 2-pin EXPERT (1x2)

CN Location: See Figure 3-8

CN Pinouts: See Table 3-8

The power button connector is connected to a power switch on the system chassis to enable users to turn the system on and off.

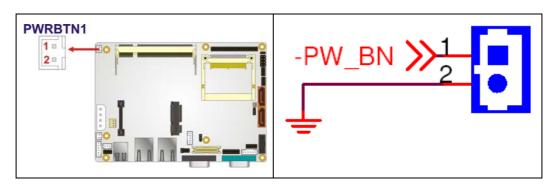


Figure 3-8: Power Button Connector Location

PIN NO.	DESCRIPTION
1	Power Switch
2	GND

Table 3-8: Power Button Connector Pinouts

3.3.8 Reset Button Connector

CN Label: RESET1

CN Type: 2-pin EXPERT (1x2)

CN Location: See Figure 3-9

CN Pinouts: See Table 3-9

The reset button connector is connected to a reset switch on the system chassis to enable users to reboot the system when the system is turned on.

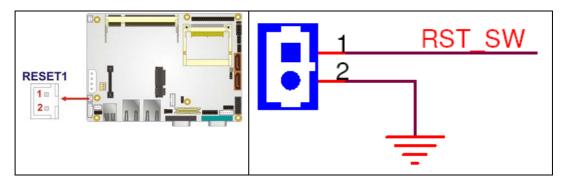


Figure 3-9: Reset Button Connector Locations

PIN NO.	DESCRIPTION
1	Reset Switch
2	GND

Table 3-9: Reset Button Connector Pinouts

3.3.9 SATA Drive Connectors

CN Label: SATA1, SATA2

CN Type: 7-pin SATA drive connectors

CN Location: See Figure 3-10

CN Pinouts: See Table 3-10

The SATA drive connectors are each connected to a first generation SATA drive. First generation SATA drives transfer data at speeds as high as 150Mb/s. The SATA drives can be configured in a RAID configuration.

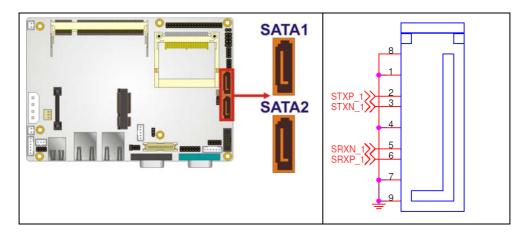


Figure 3-10: SATA Drive Connector Locations

PIN NO.	DESCRIPTION
1	GND
2	TX+
3	TX-
4	GND
5	RX-
6	RX+
7	GND

Table 3-10: SATA Drive Connector Pinouts

3.3.10 Serial Port Connector (COM3, COM4, COM5 and COM6)

CN Label: COM

CN Type: 40-pin header (2x20)

CN Location: See Figure 3-11

CN Pinouts: See Table 3-11

The 40-pin serial port connector contains the following four serial ports: COM3, COM4, COM5 and COM6. All these serial ports are RS-232 serial communications channels. The serial port locations are specified below.

- COM3 is located on pin 1 to pin 10
- COM4 is located on pin 11 to pin 20
- COM5 is located on pin 21 to pin 30
- COM6 is located on pin 31 to pin 40

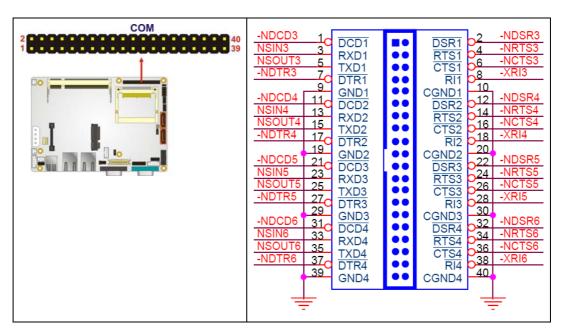


Figure 3-11: COM3 to COM6 Connector Pinout Locations

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	DATA CARRIER DETECT (DCD3)	2	DATA SET READY (DSR3)
3	RECEIVE DATA (RXD3)	4	REQUEST TO SEND (RTS3)
5	TRANSMIT DATA (TXD3)	6	CLEAR TO SEND (CTS3)
7	DATA TERMINAL READY (DTR3)	8	RING INDICATOR (RI3)
9	GND	10	GND
11	DATA CARRIER DETECT (DCD4)	12	DATA SET READY (DSR4)
13	RECEIVE DATA (RXD4)	14	REQUEST TO SEND (RTS4)
15	TRANSMIT DATA (TXD4)	16	CLEAR TO SEND (CTS4)
17	DATA TERMINAL READY (DTR4)	18	RING INDICATOR (RI4)
19	GND	20	GND
21	DATA CARRIER DETECT (DCD5)	22	DATA SET READY (DSR5)
23	RECEIVE DATA (RXD5)	24	REQUEST TO SEND (RTS5)

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
25	TRANSMIT DATA (TXD5)	26	CLEAR TO SEND (CTS5)
27	DATA TERMINAL READY (DTR5)	28	RING INDICATOR (RI5)
29	GND	30	GND
31	DATA CARRIER DETECT (DCD6	32	DATA SET READY (DSR6)
33	RECEIVE DATA (RXD6)	34	REQUEST TO SEND (RTS6)
35	TRANSMIT DATA (TXD6	36	CLEAR TO SEND (CTS6)
37	DATA TERMINAL READY (DTR6	38	RING INDICATOR (RI6)
39	GND	40	GND

Table 3-11: COM3 to COM6 Connector Pinouts

3.3.11 Serial Port Connector (COM 2)

CN Label: COM2

CN Type: 14-pin header (2x7)

CN Location: See Figure 3-12

CN Pinouts: See Table 3-12

The 14-pin serial port connector connects to the COM2 serial communications channels. COM2 is a multi function channel. In the EX-9392B system, the COM2 is an RS-232 serial communication channel by default.

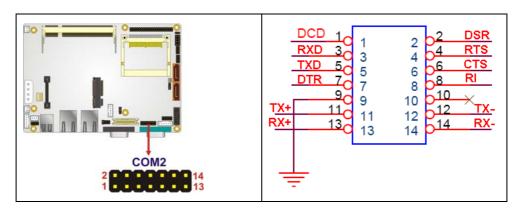


Figure 3-12: Serial Port Connector Location

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	NDCD	2	NDSR2
3	NRX	4	NRTS2
5	NTX	6	NCTS2
7	NDTR	8	NRI2
9	GND	10	GND
11	TXD485+	12	TXD485-
13	RXD485+	14	RXD485-

Table 3-12: Serial Port Connector Pinouts

3.3.12 USB Connectors (Internal)

CN Label: USB01 and USB23

CN Type: 8-pin header (2x4)

CN Location: See Figure 3-13

CN Pinouts: See **Table 3-13**

The 2x4 USB pin connectors each provide connectivity to two USB 1.1 or two USB 2.0 ports. Each USB connector can support two USB devices. Additional external USB ports are found on the rear panel. The USB ports are used for I/O bus expansion.

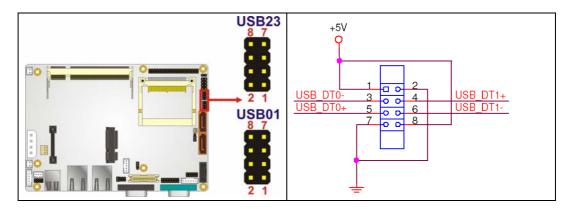


Figure 3-13: USB Connector Pinout Locations

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	vcc	2	GND
3	DATA-	4	DATA+
5	DATA+	6	DATA-
7	GND	8	vcc

Table 3-13: USB Port Connector Pinouts

3.4 External Peripheral Interface Connector Panel

Figure 3-14 shows the EX-9392B external peripheral interface connector (EPIC) panel. The EX-9392B EPIC panel consists of the following:

- 2 x RJ-45 LAN connectors
- 1 x Serial port connectors
- 2 x USB connectors
- 1 x VGA connector

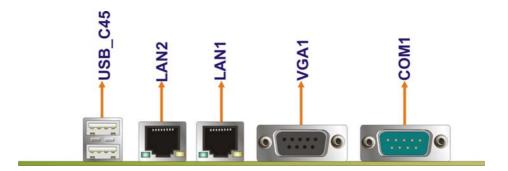


Figure 3-14: EX-9392B External Peripheral Interface Connector

3.4.1 LAN Connectors

CN Label: LAN1 and LAN2

CN Type: RJ-45

CN Location: See Figure 3-14

CN Pinouts: See Table 3-14

The EX-9392B is equipped with two built-in RJ-45 Ethernet controllers. The controllers can connect to the LAN through two RJ-45 LAN connectors. There are two LEDs on the connector indicating the status of LAN. The pin assignments are listed in the following table:

PIN	DESCRIPTION	PIN	DESCRIPTION
1	MDIA3-	5	MDIA1+
2	MDIA3+	6	MDIA2+
3	MDIA2-	7	MDIAO-
4	MDIA1-	8	MDI AO+

Table 3-14: LAN Pinouts

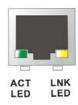


Figure 3-15: RJ-45 Ethernet Connector

The RJ-45 Ethernet connector has two status LEDs, one green and one yellow. The green LED indicates activity on the port and the yellow LED indicates the port is linked. See Table 3-15.

STATUS	DESCRIPTION	STATUS	DESCRIPTION
GREEN	Activity	YELLOW	Linked

Table 3-15: RJ-45 Ethernet Connector LEDs

3.4.2 Serial Port Connector (COM1)

CN Label: COM1

CN Type: DB-9 connectors

CN Location: See Figure 3-14

CN Pinouts: See Table 3-16 and Figure 3-16

The 9-pin DB-9 serial port connectors are connected to RS-232 serial communications devices.

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	DCD	6	DSR
2	RX	7	RTS
3	TX	8	стѕ
4	DTR	9	RI
5	GND		

Table 3-16: RS-232 Serial Port (COM 1) Pinouts

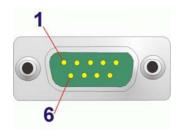


Figure 3-16: COM1 Pinout Locations

3.4.3 USB Connectors

CN Label: USB

CN Type: Dual USB port

CN Location: See Figure 3-14

CN Pinouts: See Table 3-17

The EX-9392B has two external USB 2.0 ports. The ports connect to both USB 2.0 and USB 1.1 devices.

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	vcc	5	vcc
2	DATA-	6	DATA-
3	DATA+	7	DATA+
4	GND	8	GND

Table 3-17: USB Port Pinouts

3.4.4 VGA Connector

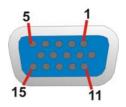
CN Label: VGA1

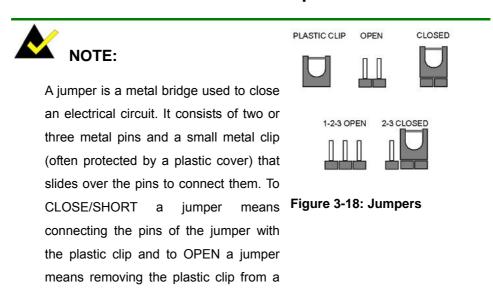
CN Type: 15-pin Female

CN Location: See Figure 3-14

CN Pinouts: See Figure 3-17 and Table 3-18

The EX-9392B has a single 15-pin female connector for connectivity to standard display devices.




Figure 3-17: VGA Connector

PIN	DESCRIPTION	PIN	DESCRIPTION
1	RED	2	GREEN
3	BLUE	4	NC
5	GND	6	CRT_PLUG-
7	GND	8	GND
9	vcc	10	GND
11	NC	12	DDC DAT

PIN	DESCRIPTION	PIN	DESCRIPTION
13	HSYNC	14	VSYNC
15	DDCCLK	\times	

Table 3-18: VGA Connector Pinouts

3.5 EXPERT Motherboard On-board Jumpers

The EXPERT motherboard has several onboard jumpers (Table 3-19).

Description	Label	Туре
CF Card Setting	JCF1	2-pin header
Clear CMOS	J_CMOS1	3-pin header

Table 3-19: Jumpers

jumper.

3.5.1 CF Card Setup

Jumper Label: JCF1

Jumper Type: 2-pin header

Jumper Settings: See Table 3-20

Jumper Location: See Figure 3-19

The CF Card Setup jumper sets the CF Type I card or CF Type II cards as either the slave device or the master device. CF Card Setup jumper settings are shown in Table 3-20.

CF Card Setup	Description	
OFF	Slave	Default
Short 1-2	Master	

Table 3-20: CF Card Setup Jumper Settings

The CF Card Setup jumper location is shown in Figure 3-19.

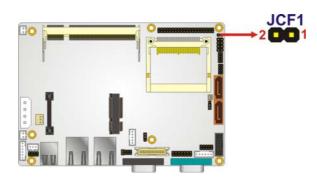


Figure 3-19: CF Card Setup Jumper Location

3.5.2 Clear CMOS Jumper

Jumper Label: J_CMOS1

Jumper Type: 3-pin header

Jumper Settings: See Table 3-21

Jumper Location: See Figure 3-20

If the EX-9392B fails to boot due to improper BIOS settings, the clear CMOS jumper clears the CMOS data and resets the system BIOS information. To do this, use the jumper cap to close pins 2 and 3 for a few seconds then reinstall the jumper clip back to pins 1 and 2.

If the "CMOS Settings Wrong" message is displayed during the boot up process, the fault may be corrected by pressing the F1 to enter the CMOS Setup menu. Do one of the following:

- Enter the correct CMOS setting
- Load Optimal Defaults
- Load Failsafe Defaults.

After having done one of the above, save the changes and exit the CMOS Setup menu.

The clear CMOS jumper settings are shown in Table 3-21.

AT Power Select	Description	
Short 1 - 2	Keep CMOS Setup	Default
Short 2 - 3	Clear CMOS Setup	

Table 3-21: Clear CMOS Jumper Settings

The location of the clear CMOS jumper is shown in Figure 3-20 below.

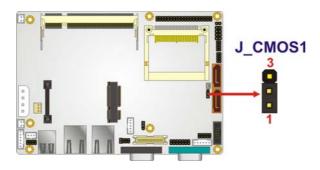


Figure 3-20: Clear CMOS Jumper

3.5.3 COM 2 Function Select Jumper

Jumper Label: JP1

Jumper Type: 8-pin header

Jumper Settings: See Table 3-22

Jumper Location: See Figure 3-21

The COM 2 Function Select jumper sets the communication protocol used by the second serial communications port (COM 2) as RS-232, RS-422 or RS-485. The COM 2 Function Select settings are shown in **Table 3-22**.

COM 2 Function Select	Description	
Short 1-2	RS-232	Default
Short 3-4	RS-422	
Short 5-6	RS-485	
Short 5-6	RS-485 with RTS control	
Short 7-8		

Table 3-22: COM 2 Function Select Jumper Settings

The COM 2 Function Select jumper location is shown in Figure 3-21.

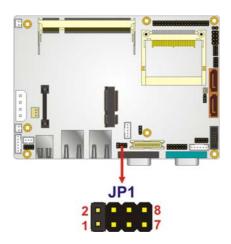


Figure 3-21: COM 2 Function Select Jumper Location

3.6 Connector Mappings

This section describes how the connectors on the motherboard and power module are connected to different components within the system. When performing maintenance operations on the system it is imperative that the correct connections are made.

3.6.1 Power Connector

The connector mapping for the power module output power connector and the motherboard input power connector are shown in **Table 3-23**.

EXPERT	Power Module
ATXPWR1: Power	CN4: Output Power
Pin 1	Pin 4
Pin 2	Pin 3
Pin 3	Pin 2
Pin 4	Pin 1

Table 3-23: Motherboard Power Connector Mapping

3.6.2 ATX Mode Connector

The connector mapping for the ATX mode connector on the motherboard and power module are shown in **Table 3-24**.

EXPERT	Power Module
ATXCTL1: PS-ON	CN7: ATX Mode
Pin 1	Pin 1
Pin 2	Pin 2
Pin 3	Pin 3

Table 3-24: Motherboard Power Connector Mapping

Chapter 4

Installation

4.1 Anti-static Precautions

WARNING:

If the following anti-static precautions are not followed, a user may be injured and the system irreparably damaged.

Electrostatic discharge (ESD) can cause serious damage to electronic components, including the EXPERT series motherboard and the power module. (Dry climates are especially susceptible to ESD.) It is therefore critical that whenever the EX-9392B is opened and any electrical component handled, the following anti-static precautions are strictly adhered to.

- Wear an anti-static wristband: Wearing a simple anti-static wristband can help to prevent ESD from damaging the board.
- Self-grounding:- Before handling the board, touch any grounded conducting material. During the time the board is handled, frequently touch any conducting materials that are connected to the ground.

4.2 Installation Procedure

4.2.1 Installation Procedure Overview

To properly install the EX-9392B, the following steps must be followed. Detailed descriptions of these instructions are listed in the sections that follow.

Step 1: Unpacking

Step 2: Configure the jumper settings

Step 3: Install the SATA hard disk drive (HDD)

Step 4: Mount the EX-9392B

Step 5: Connect the front panel peripheral connectors

Page 44

Step 6: Power the system up

4.2.2 Unpacking

After the EX-9392B is received make sure the following components are included in the package. If any of these components are missing, please contact the EX-9392B reseller or vendor where it was purchased or contact an TOPSCCC sales representative immediately.

Quantity	Item	Image
1	EX-9392B embedded system	
1	Power cord (optional for WD models)	
1	Power Adaptor (optional for WD models)	
2	Mounting brackets	
1	Screw set	
1	Thermal pad for HDD	
1	Quick installation guide	
1	Driver and manual CD	
1	Wireless antenna (wireless model only)	

1	VESA MIS-D 100 wall mount kit (optional)	
1	DIN mount kit (optional)	

Table 4-1: Package List Contents

4.2.3 Bottom Surface Removal

Before the jumper settings can be configured and the hard disk drive can be installed, the bottom surface must be removed. To remove the bottom surface, please follow the steps below:

Step 1: Remove the bottom surface retention screws. The bottom surface is secured to the chassis with six retention screws (Figure 4-1). All six screws must be removed.

Figure 4-1: Bottom Surface Retention Screws

Step 2: Gently remove the bottom surface from the EX-9392B.

4.2.4 Configure the Jumper Settings

To configure the jumper settings, please follow the steps below.

- Step 1: Remove the bottom surface. See Section 4.2.3.
- **Step 2:** Locate the jumper settings on the embedded motherboard. See **Chapter 3**.
- **Step 3:** Make the jumper settings in accordance with the settings described and defined in **Chapter 3**.

4.2.5 Hard Drive Installation

One 2.5" SATA hard drive supported. The SATA drive is installed into a hard drive bracket attached on the inside of the bottom panel (**Figure 4-2**).

Figure 4-2: Hard Drive Bracket

To install the hard drive into the system, please follow the steps below.

- **Step 1:** Remove the bottom surface See **Section 4.2.3**.
- **Step 2:** Remove the hard drive bracket from the bottom surface by removing the four retention screws that secure the bracket to the bottom surface. (**Figure 4-3**)

Figure 4-3:HDD Bracket Retention Screws

- **Step 3:** Place the HDD into the bracket.
- **Step 4:** Align the retention screw holes in the HDD with those in the bottom of the bracket.
- **Step 5:** Secure the HDD with the bracket by inserting four retention screws into the bottom of the bracket (**Figure 4-4**).

Figure 4-4: HDD Retention Screws

- **Step 6:** Locate the breather hole of the HDD. Cut off the corresponding area of the breather hole from the thermal pad.
- **Step 7:** Adhere the thermal pad to the HDD. Make sure there is no obstacle covering the breather hole (**Figure 4-5**).

CAUTION:

Make sure the breather hole of the HDD is not covered. Covering the breather hole may cause damage to the HDD.

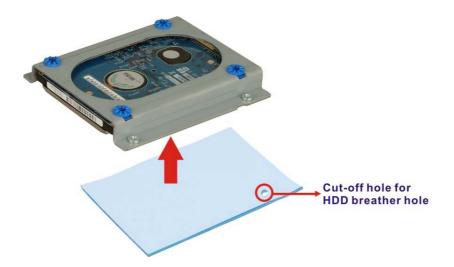


Figure 4-5: HDD Thermal Pad

- **Step 8:** Replace the HDD bracket onto the bottom surface by aligning the four retention screw holes in the HDD bracket with those in the back of the bottom surface.
- **Step 9:** Reinsert the four previously removed retention screws.
- Step 10: Connect the SATA cable connector in the EX-9392B to the HDD.
- **Step 11:** Replace the bottom surface to the bottom panel by reinserting the six previously removed retention screws.

4.2.6 Mounting the System with Mounting Brackets

To mount the embedded system onto a wall or some other surface using the two mounting brackets, please follow the steps below.

- Step 1: Turn the embedded system over.
- **Step 2:** Align the two retention screw holes in each bracket with the corresponding retention screw holes on the sides of the bottom surface.
- **Step 3:** Secure the brackets to the system by inserting two retention screws into each bracket.

Figure 4-6: Mounting Bracket Retention Screws

- Step 4: Drill holes in the intended installation surface.
- **Step 5:** Align the mounting holes in the sides of the mounting brackets with the predrilled holes in the mounting surface.
- **Step 6:** Insert four retention screws, two in each bracket, to secure the system to the wall.

4.2.7 Mounting the System with Wall Mount Kit

To mount the embedded system onto a wall using the VESA MIS-D 100 wall mount kit, please follow the steps below.

- **Step 1:** Select the location on the wall for the wall-mounting bracket.
- Step 2: Carefully mark the locations of the four bracket screw holes on the wall.
- **Step 3:** Drill four pilot holes at the marked locations on the wall for the bracket retention screws.
- **Step 4:** Align the wall-mounting bracket screw holes with the pilot holes.
- **Step 5:** Secure the mounting-bracket to the wall by inserting the retention screws into the four pilot holes and tightening them (**Figure 4-7**).

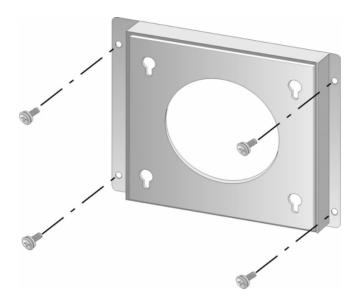


Figure 4-7: Wall-mounting Bracket

- **Step 6:** Insert the four monitor mounting screws provided in the wall mounting kit into the four screw holes on the bottom panel of the system and tighten until the screw shank is secured against the bottom panel (**Figure 4-8**).
- **Step 1:** Align the mounting screws on the EX-9392B bottom panel with the mounting holes on the bracket.
- Step 2: Carefully insert the screws through the holes and gently pull the monitor downwards until the EX-9392B rests securely in the slotted holes (Figure 4-8). Ensure that all four of the mounting screws fit snuggly into their respective slotted holes.

In the diagram below the bracket is already installed on the wall.

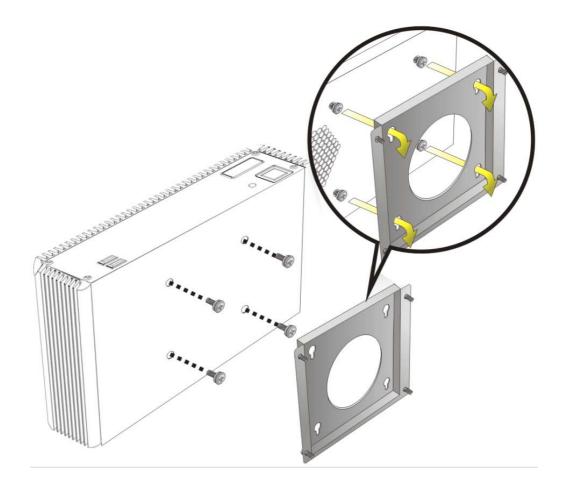


Figure 4-8: Mount the Embedded System

4.2.8 DIN Mounting

To mount the EX-9392B embedded system onto a DIN rail, please follow the steps below.

Step 3: Attach the DIN rail mounting bracket to the bottom panel of the embedded system. Secure the bracket to the embedded system with the supplied retention screws (**Figure 4-9**).

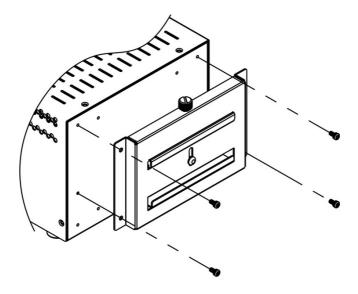


Figure 4-9: DIN Rail Mounting Bracket

Step 4: Make sure the inserted screw in the center of the bracket is at the lowest position of the elongated hole (**Figure 4-10**).

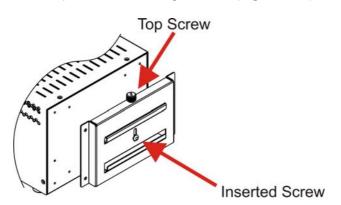


Figure 4-10: Screw Locations

Step 5: Place the DIN rail flush against the back of the mounting bracket making sure the edges of the rail are between the upper and lower clamps (**Figure 4-11**).

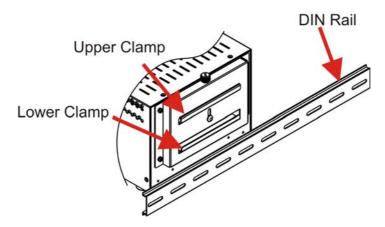


Figure 4-11: Mounting the DIN RAIL

Step 6: Secure the DIN rail to the mounting bracket by turning the top screw clockwise.

This draws the lower clamp up and secures the embedded system to the DIN rail (Figure 4-12).

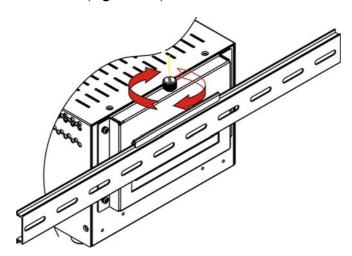


Figure 4-12: Secure the Assembly to the DIN Rail

4.2.9 Wireless Antenna Installation (Wireless Models Only)

To install an antenna to the wireless EX-9392B series for efficient wireless network transmission, follow the steps below.

Step 1: Locate the antenna connector on the rear panel of the embedded system (refer to **Figure 2-5**).

Step 2: Install the antenna to the antenna connector (Figure 4-13).

Figure 4-13: Wireless Antenna Installation

4.2.10 Cable Connections

Once the system has been mounted on the wall, the following connectors can be connected to the system.

- VGA cable connector
- Serial port connectors
- RJ-45 connectors
- USB devices can be connected to the system.

The cable connection locations are shown in **Figure 2-5**.

4.3 Power-On Procedure

4.3.1 Installation Checklist

WARNING:

Make sure a power supply with the correct input voltage is being fed into the system. Incorrect voltages applied to the system may cause damage to the internal electronic components and may also cause injury to the user.

To power on the embedded system please make sure of the following:

- The bottom surface panel is installed
- All peripheral devices (VGA monitor, serial communications devices etc.) are connected
- The power cables are plugged in
- The system is securely mounted

4.3.2 Terminal Block Pinouts

The terminal block pinouts are shown in Figure 4-14.

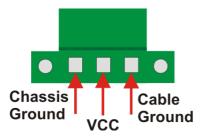


Figure 4-14: Terminal Block Pinouts

The chassis ground is connected to the EX chassis internally. The cable ground is connected to the ground pin on the input power connector of the power module.

4.3.3 Power-on Procedure

To power-on the EX-9392B please follow the steps below:

- **Step 1:** Push the power button.
- **Step 2:** Once turned on, the power button should turns to blue. See **Figure 4-15**.

Figure 4-15: Power Button

Chapter 5

BIOS Screens

5.1 Introduction

A licensed copy of AMI BIOS is preprogrammed into the ROM BIOS. The BIOS setup program allows users to modify the basic system configuration. This chapter describes how to access the BIOS setup program and the configuration options that may be changed.

5.1.1 Starting Setup

The AMI BIOS is activated when the computer is turned on. The setup program can be activated in one of two ways.

- 1. Press the **DELETE** key as soon as the system is turned on or
- 2. Press the **DELETE** key when the "**Press Del to enter SETUP**" message appears on the screen.

If the message disappears before the **DELETE** key is pressed, restart the computer and try again.

5.1.2 Using Setup

Use the arrow keys to highlight items, press **ENTER** to select, use the PageUp and PageDown keys to change entries, press **F1** for help and press **Esc** to quit. Navigation keys are shown in.

Key	Function			
Up arrow	Move to previous item			
Down arrow	Move to next item			
Left arrow	Move to the item on the left hand side			
Right arrow	Move to the item on the right hand side			
Esc key	Main Menu – Quit and not save changes into CMOS			
	Status Page Setup Menu and Option Page Setup Menu			
	Exit current page and return to Main Menu			
Page Up key	Increase the numeric value or make changes			
Page Dn key	Decrease the numeric value or make changes			

F1 key	General help, only for Status Page Setup Menu and Option				
	Page Setup Menu				
F2 /F3 key	Change color from total 16 colors. F2 to select color				
	forward.				
F10 key	Save all the CMOS changes, only for Main Menu				

Table 5-1: BIOS Navigation Keys

5.1.3 Getting Help

When **F1** is pressed a small help window describing the appropriate keys to use and the possible selections for the highlighted item appears. To exit the Help Window press **Esc** or the **F1** key again.

5.1.4 Unable to Reboot After Configuration Changes

If the computer cannot boot after changes to the system configuration is made, CMOS defaults. Use the jumper described in **Chapter 5**.

5.1.5 BIOS Menu Bar

The **menu bar** on top of the BIOS screen has the following main items:

- **Main** Changes the basic system configuration.
- Advanced Changes the advanced system settings.
- PCIPnP Changes the advanced PCI/PnP Settings
- **Boot** Changes the system boot configuration.
- Security Sets User and Supervisor Passwords.
- Chipset Changes the chipset settings.
- **Power** Changes power management settings.
- Exit Selects exit options and loads default settings

The following sections completely describe the configuration options found in the menu items at the top of the BIOS screen and listed above.

5.2 Main

The **Main** BIOS menu (**BIOS Menu 1**) appears when the **BIOS Setup** program is entered. The **Main** menu gives an overview of the basic system information.

BIOS Menu 1: Main

→ System Overview

The **System Overview** lists a brief summary of different system components. The fields in **System Overview** cannot be changed. The items shown in the system overview include:

AMI BIOS: Displays auto-detected BIOS information

O Version: Current BIOS version

O Build Date: Date the current BIOS version was made

O ID: Installed BIOS ID

■ **Processor**: Displays auto-detected CPU specifications

O Type: Names the currently installed processor

O Speed: Lists the processor speed

O Count: The number of CPUs on the motherboard

■ **System Memory**: Displays the auto-detected system memory.

O Size: Lists memory size

The System Overview field also has two user configurable fields:

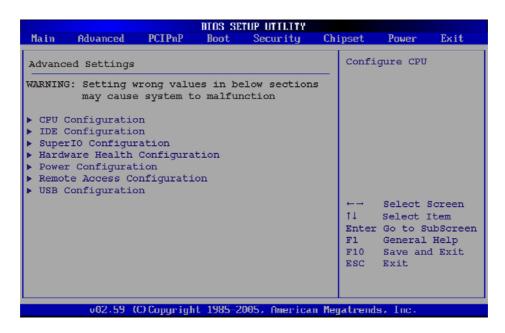
→ System Time [xx:xx:xx]

Use the **System Time** option to set the system time. Manually enter the hours, minutes and seconds.

→ System Date [xx/xx/xx]

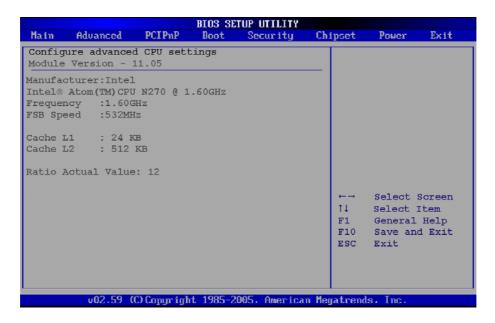
Use the **System Date** option to set the system date. Manually enter the day, month and year.

5.3 Advanced


Use the **Advanced** menu (**BIOS Menu 2**) to configure the CPU and peripheral devices through the following sub-menus:

WARNING:

Setting the wrong values in the sections below may cause the system to malfunction. Make sure that the settings made are compatible with the hardware.


- CPU Configuration (see **Section 5.3.1**)
- IDE Configuration (see **Section 5.3.2**)
- SuperIO Configuration (see **Section 5.3.3**)
- Hardware Health Configuration (see Section 5.3.4)
- Power Configuration (see **Section 5.3.5**)
- Remote Access Configuration (see **Section 5.3.6**)
- USB Configuration (see **Section 5.3.7**)

BIOS Menu 2: Advanced

5.3.1 CPU Configuration

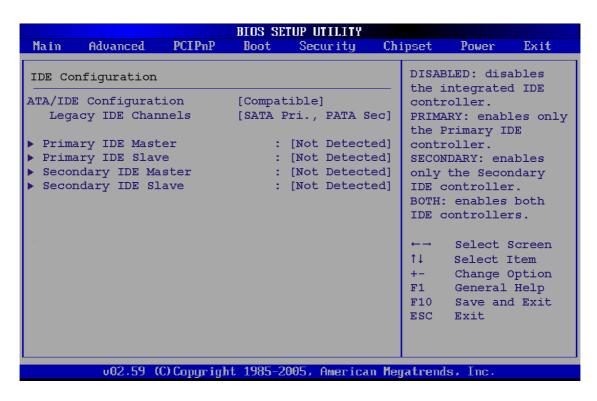
Use the **CPU Configuration** menu (**BIOS Menu 3**) to view detailed CPU specifications and configure the CPU.

BIOS Menu 3: CPU Configuration

The CPU Configuration menu (BIOS Menu 3) lists the following CPU details:

Manufacturer: Lists the name of the CPU manufacturer

■ Brand String: Lists the brand name of the CPU being used


■ Frequency: Lists the CPU processing speed

■ FSB Speed: Lists the FSB speed

Cache L1: Lists the CPU L1 cache size
 Cache L2: Lists the CPU L2 cache size

5.3.2 IDE Configuration

Use the IDE Configuration menu (BIOS Menu 4) to change and/or set the configuration of the IDE devices installed in the system.

BIOS Menu 4: IDE Configuration

→ ATA/IDE Configurations [Compatible]

Use the ATA/IDE Configurations option to configure the ATA/IDE controller.

→ **Disabled** Disables the on-board ATA/IDE controller.

→ Compatible Configures the on-board ATA/IDE controller to be in

compatible mode. In this mode, a SATA channel will

replace one of the IDE channels. This mode supports up

to 4 storage devices.

→ Enhanced DEFAULT Configures the on-board ATA/IDE controller to be in

Enhanced mode. In this mode, IDE channels and SATA

channels are separated. This mode supports up to 6

storage devices. Some legacy OS do not support this

mode.

→ Legacy IDE Channels [PATA Pri, SATA Sec]

→ SATA Only Only the SATA drives are enabled.

→ SATA Pri, PATA Sec DEFAULT The IDE drives are enabled on the Primary

IDE channel. The SATA drives are enabled on

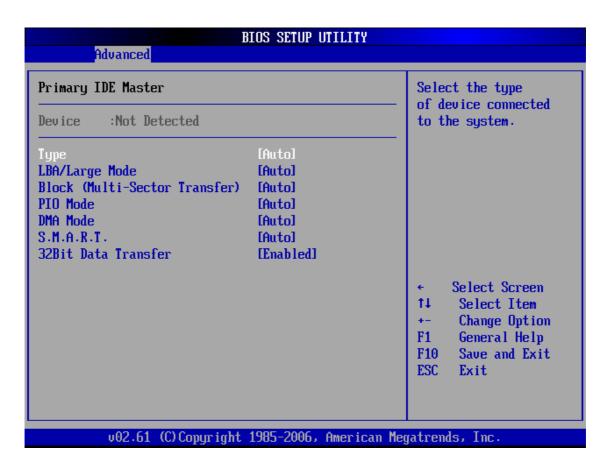
the Secondary IDE channel.

→ PATA Only The IDE drives are enabled on the primary

and secondary IDE channels. SATA drives

are disabled.

→ IDE Master and IDE Slave


When entering setup, BIOS auto detects the presence of IDE devices. BIOS displays the status of the auto detected IDE devices. The following IDE devices are detected and are shown in the **IDE Configuration** menu:

- Primary IDE Master
- Primary IDE Slave
- Secondary IDE Master
- Secondary IDE Slave

The IDE Configuration menu (BIOS Menu 4) allows changes to the configurations for the IDE devices installed in the system. If an IDE device is detected, and one of the above listed four BIOS configuration options are selected, the IDE configuration options shown in Section 5.3.2.1 appear.

5.3.2.1 IDE Master, IDE Slave

Use the **IDE Master** and **IDE Slave** configuration menu to view both primary and secondary IDE device details and configure the IDE devices connected to the system.

BIOS Menu 5: IDE Master and IDE Slave Configuration

→ Auto-Detected Drive Parameters

The "grayed-out" items in the left frame are IDE disk drive parameters automatically detected from the firmware of the selected IDE disk drive. The drive parameters are listed as follows:

- **Device**: Lists the device type (e.g. hard disk, CD-ROM etc.)
- Type: Indicates the type of devices a user can manually select
- **Vendor**: Lists the device manufacturer
- Size: List the storage capacity of the device.
- **LBA Mode**: Indicates whether the LBA (Logical Block Addressing) is a method of addressing data on a disk drive is supported or not.
- Block Mode: Block mode boosts IDE drive performance by increasing the amount of data transferred. Only 512 bytes of data can be transferred per interrupt if block mode is not used. Block mode allows transfers of up to 64 KB per interrupt.
- PIO Mode: Indicates the PIO mode of the installed device.
- Async DMA: Indicates the highest Asynchronous DMA Mode that is supported.
- **Ultra DMA**: Indicates the highest Synchronous DMA Mode that is supported.
- **S.M.A.R.T.**: Indicates whether or not the Self-Monitoring Analysis and Reporting Technology protocol is supported.
- 32Bit Data Transfer: Enables 32-bit data transfer.

→ Type [Auto]

Use the **Type** BIOS option select the type of device the AMIBIOS attempts to boot from after the Power-On Self-Test (POST) is complete.

→	Not Installed		BIOS	S is pr	evente	ed from	searc	hing	for a	n IDE	disk
			drive	on the	speci	fied char	nnel.				
→	Auto	DEFAULT	The	BIOS	auto	detects	the	IDE	disk	drive	type

The BIOS auto detects the IDE disk drive type attached to the specified channel. This setting should be used if an IDE hard disk drive is attached to the

specified channel.

The CD/DVD option specifies that an IDE CD-ROM

drive is attached to the specified IDE channel. The

BIOS does not attempt to search for other types of

IDE disk drives on the specified channel.

ARMD This option specifies an ATAPI Removable Media

Device. These include, but are not limited to:

→ ZIP

→ LS-120

→ LBA/Large Mode [Auto]

Use the **LBA/Large Mode** option to disable or enable BIOS to auto detects LBA (Logical Block Addressing). LBA is a method of addressing data on a disk drive. In LBA mode, the maximum drive capacity is 137 GB.

Disabled BIOS is prevented from using the LBA mode control on

the specified channel.

Auto DEFAULT BIOS auto detects the LBA mode control on the specified

channel.

→ Block (Multi Sector Transfer) [Auto]

Use the **Block (Multi Sector Transfer)** to disable or enable BIOS to auto detect if the device supports multi-sector transfers.

DisabledBIOS is prevented from using Multi-Sector Transfer on the

specified channel. The data to and from the device occurs

one sector at a time.

→ Auto DEFAULT

BIOS auto detects Multi-Sector Transfer support on the drive on the specified channel. If supported the data transfer to and from the device occurs multiple sectors at a time.

→ PIO Mode [Auto]

Use the **PIO Mode** option to select the IDE PIO (Programmable I/O) mode program timing cycles between the IDE drive and the programmable IDE controller. As the PIO mode increases, the cycle time decreases.

→	Auto	DEFAULT	BIOS auto detects the PIO mode. Use this value if the IDE disk
			drive support cannot be determined.
→	0		PIO mode 0 selected with a maximum transfer rate of 3.3MBps
→	1		PIO mode 1 selected with a maximum transfer rate of 5.2MBps
→	2		PIO mode 2 selected with a maximum transfer rate of 8.3MBps
→	3		PIO mode 3 selected with a maximum transfer rate of 11.1MBps
→	4		PIO mode 4 selected with a maximum transfer rate of 16.6MBps
			(This setting generally works with all hard disk drives
			manufactured after 1999. For other disk drives, such as IDE
			CD-ROM drives, check the specifications of the drive.)

→ DMA Mode [Auto]

Use the **DMA Mode** BIOS selection to adjust the DMA mode options.

Auto DEFAULT BIOS auto detects the DMA mode. Use this value if the IDE disk drive support cannot be determined.

→	SWDMA0	Single Word DMA mode 0 selected with a maximum data
		transfer rate of 2.1MBps
→	SWDMA1	Single Word DMA mode 1 selected with a maximum data
		transfer rate of 4.2MBps
→	SWDMA2	Single Word DMA mode 2 selected with a maximum data
		transfer rate of 8.3MBps
→	MWDMA0	Multi Word DMA mode 0 selected with a maximum data
		transfer rate of 4.2MBps
→	MWDMA1	Multi Word DMA mode 1 selected with a maximum data
		transfer rate of 13.3MBps
→	MWDMA2	Multi Word DMA mode 2 selected with a maximum data
		transfer rate of 16.6MBps
→	UDMA1	Ultra DMA mode 0 selected with a maximum data transfer
		rate of 16.6MBps
→	UDMA1	Ultra DMA mode 1 selected with a maximum data transfer
		rate of 25MBps
→	UDMA2	Ultra DMA mode 2 selected with a maximum data transfer
		rate of 33.3MBps
→	UDMA3	Ultra DMA mode 3 selected with a maximum data transfer
		rate of 44MBps (To use this mode, it is required that an
		80-conductor ATA cable is used.)
7	UDMA4	Ultra DMA mode 4 selected with a maximum data transfer
		rate of 66.6MBps (To use this mode, it is required that an
_		80-conductor ATA cable is used.)
7	UDMA5	Ultra DMA mode 5 selected with a maximum data transfer

rate of 99.9MBps (To use this mode, it is required that an 80-conductor ATA cable is used.)

→ S.M.A.R.T [Auto]

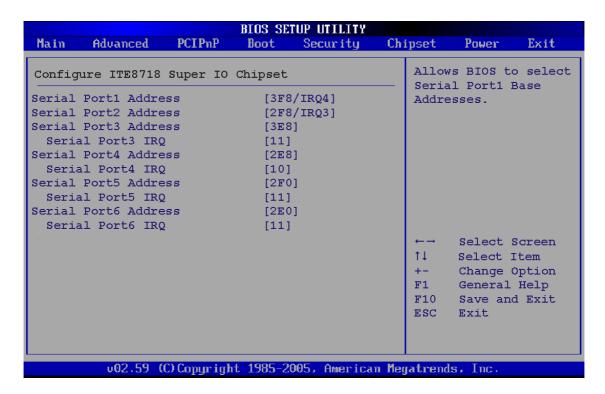
Use the **S.M.A.R.T** option to auto-detect, disable or enable Self-Monitoring Analysis and Reporting Technology (SMART) on the drive on the specified channel. **S.M.A.R.T** predicts impending drive failures. The **S.M.A.R.T** BIOS option enables or disables this function.

→ Auto DEFAULT BIOS auto detects HDD SMART support.

→ **Disabled** Prevents BIOS from using the HDD SMART feature.

→ Enabled Allows BIOS to use the HDD SMART feature

→ 32Bit Data Transfer [Enabled]


Use the 32Bit Data Transfer BIOS option to enables or disable 32-bit data transfers.

→ **Disabled** Prevents the BIOS from using 32-bit data transfers.

Enabled DEFAULT Allows BIOS to use 32-bit data transfers on supported hard disk drives.

5.3.3 Super IO Configuration

Use the **Super IO Configuration** menu (**BIOS Menu 6**) to set or change the configurations for the FDD controllers, parallel ports and serial ports.

BIOS Menu 6: Super IO Configuration

→ Serial Port1 Address [3F8/IRQ4]

Use the **Serial Port1 Address** option to select the Serial Port 1 base address.

→	Disabled		No base address is assigned to Serial Port 1
→	3F8/IRQ4	DEFAULT	Serial Port 1 I/O port address is 3F8 and the interrupt address is IRQ4
→	3E8/IRQ4		Serial Port 1 I/O port address is 3E8 and the interrupt address is IRQ4
→	2E8/IRQ3		Serial Port 1 I/O port address is 2E8 and the interrupt

address is IRQ3

→ Serial Port2 Address [2F8/IRQ3]

Use the Serial Port2 Address option to select the Serial Port 2 base address.

→ **Disabled** No base address is assigned to Serial Port 2

2F8/IRQ3 DEFAULT Serial Port 2 I/O port address is 3F8 and the interrupt

address is IRQ3

3E8/IRQ4 Serial Port 2 I/O port address is 3E8 and the interrupt

address is IRQ4

2E8/IRQ3 Serial Port 2 I/O port address is 2E8 and the interrupt

address is IRQ3

→ Serial Port3 Address [3E8]

Use the **Serial Port3 Address** option to select the base addresses for serial port 3

Disabled No base address is assigned to serial port 3

→ 3E8 DEFAULT Serial port 3 I/O port address is 3E8

Serial port 3 I/O port address is 2E8

→ 2F0 Serial port 3 I/O port address is 2F0

→ 2E0 Serial port 3 I/O port address is 2E0

→ Serial Port3 IRQ [11]

Use the **Serial Port3 IRQ** option to select the interrupt address for serial port 3.

→ 10 Serial port 3 IRQ address is 10

→ 11 DEFAULT Serial port 3 IRQ address is 11

→ Serial Port4 Address [2E8]

Use the **Serial Port4 IRQ** option to select the interrupt address for serial port 4.

→	Disabled		No base address is assigned to serial port 3
→	3E8		Serial port 4 I/O port address is 3E8
→	2E8	DEFAULT	Serial port 4 I/O port address is 2E8
→	2F0		Serial port 4 I/O port address is 2F0
→	2E0		Serial port 4 I/O port address is 2E0

→ Serial Port4 IRQ [10]

Use the Serial Port4 IRQ option to select the interrupt address for serial port 4.

→	10	DEFAULT	Serial port 4 IRQ address is 10
→	11		Serial port 4 IRQ address is 11

→ Serial Port5 Address [2F0]

Use the Serial Port5 Address option to select the base addresses for serial port 5

→	Disabled		No base address is assigned to serial port 5
→	3E8		Serial port 5 I/O port address is 2F0
→	2E8		Serial port 5 I/O port address is 2E8
→	2F0	DEFAULT	Serial port 5 I/O port address is 2F0
→	2E0		Serial port 5 I/O port address is 2E0

→ Serial Port5 IRQ [11]

Use the **Serial Port3 IRQ** option to select the interrupt address for serial port 5.

→ 10 Serial port 5 IRQ address is 10

→ 11 DEFAULT Serial port 5 IRQ address is 11

→ Serial Port6 Address [2E0]

Use the **Serial Port4 IRQ** option to select the interrupt address for serial port 6.

Disabled No base address is assigned to serial port 6

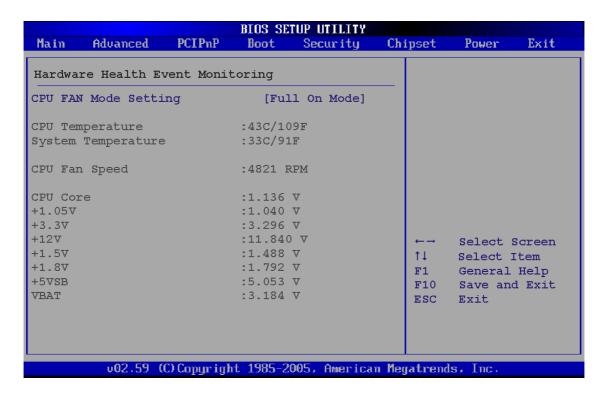
3E8 Serial port 6 I/O port address is 3E8

→ 2E8 Serial port 6 I/O port address is 2E8

Serial port 6 I/O port address is 2F0

DEFAULT Serial port 6 I/O port address is 2E0

→ Serial Port6 IRQ [10]


Use the **Serial Port6 IRQ** option to select the interrupt address for serial port 6.

Serial port 6 IRQ address is 10

→ 11 DEFAULT Serial port 6 IRQ address is 11

5.3.4 Hardware Health Configuration

The **Hardware Health Configuration** menu (**BIOS Menu 7**) shows the operating temperature, fan speeds and system voltages.

BIOS Menu 7: Hardware Health Configuration

→ CPU FAN Mode Setting [Full On Mode]

Use the CPU FAN Mode Setting option to configure the second fan.

→	Full On Mode	DEFAULT	Fan is on all the time
→	Automatic mode		Fan is off when the temperature is low
			enough. Parameters must be set by the
			user.
→	PWM Manual mode		Pulse width modulation set manually

When the CPU FAN Mode Setting option is in the Automatic Mode, the following

parameters can be set.

■ CPU Temp. Limit of OFF

CPU Temp. Limit of Start

■ CPU Fan Start PWM

Slope PWM 1

When the CPU FAN Mode Setting option is in the PWM Manual Mode, the following

parameters can be set.

■ CPU Fan PWM control

CPU Temp. Limit of OFF [000]

WARNING:

Setting this value too high may cause the fan to stop when the CPU is

at a high temperature and therefore cause the system to be damaged.

The CPU Temp. Limit of OFF option can only be set if the CPU FAN Mode Setting

option is set to Automatic Mode. Use the CPU Temp. Limit of OFF option to select the

CPU temperature at which the cooling fan should automatically turn off. To select a value,

select the CPU Temp. Limit of OFF option and enter a decimal number between 000 and

127. The temperature range is specified below.

■ Minimum Value: 0°C

Maximum Value: 127°C

→ CPU Temp. Limit of Start [020]

WARNING:

Setting this value too high may cause the fan to start only when the CPU is at a high temperature and therefore cause the system to be damaged.

The CPU Temp. Limit of Start option can only be set if the CPU FAN Mode Setting option is set to Automatic Mode. Use the CPU Temp. Limit of Start option to select the CPU temperature at which the cooling fan should automatically turn on. When the fan starts, it rotates using the starting pulse width modulation (PWM) specified in the Fan 3 Start PWM option below. To select a value, select the CPU Temp. Limit of Start option and enter a decimal number between 000 and 127. The temperature range is specified below.

Minimum Value: 0°C

Maximum Value: 127°C

→ CPU Fan Start PWM [070]

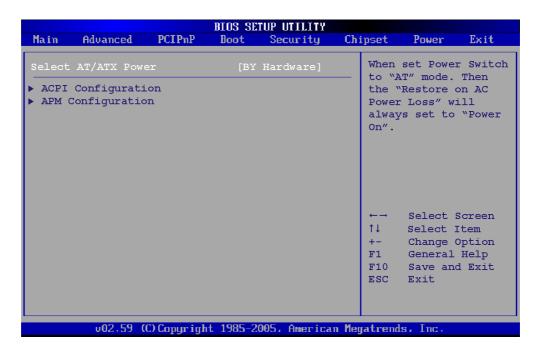
The Fan 3 Start PWM option can only be set if the CPU FAN Mode Setting option is set to Automatic Mode. Use the Fan 3 Start PWM option to select the PWM mode the fan starts to rotate with after the temperature specified in the Temperature 3 Limit of Start is exceeded. The Super I/O chipset supports 128 PWM modes. To select a value, select the Fan 3 Start PWM option and enter a decimal number between 000 and 127. The temperature range is specified below.

■ PWM Minimum Mode: 0

■ PWM Maximum Mode: 127

→ Slope PWM [0.5 PWM]

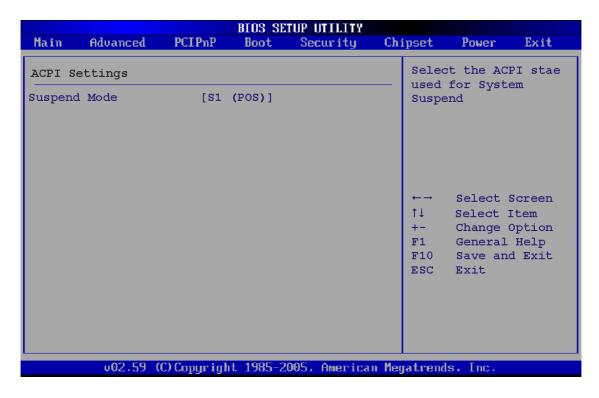
The **Slope PWM 1** option can only be set if the **CPU FAN Mode Setting** option is set to **Automatic Mode**. Use the **Slope PWM 1** option to select the linear rate at which the PWM mode increases with respect to an increase in temperature. A list of available options is shown below:


- 0 PWM
- 1 PWM
- 2 PWM
- 4 PWM
- 8 PWM
- 16 PWM
- 32 PWM
- 64 PWM

The following system parameters and values are shown. The system parameters that are monitored are:

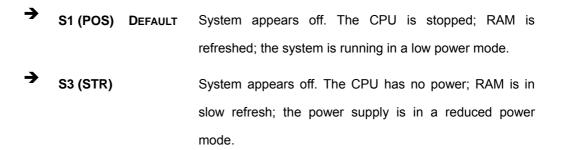
- System Temperatures: The following system temperatures are monitored
 - O CPU Temperature
 - O System Temperature
- Fan Speeds: The CPU cooling fan speed is monitored.
 - O CPU Fan Speed
- Voltages: The following system voltages are monitored
 - O CPU Core
 - o +1.05V
 - o +3.30V
 - O +12.0 V
 - o +1.5V
 - o +1.8V
 - o 5VSB
 - O VBAT

5.3.5 Power Configuration


The **Power Configuration** menu (BIOS Menu 8) configures the Advanced Configuration and Power Interface (ACPI) and Power Management (APM) options.

BIOS Menu 8: Power Configuration

5.3.5.1 ACPI configuration


The ACPI Configuration menu (BIOS Menu 9) configures the Advanced Configuration and Power Interface (ACPI).

BIOS Menu 9: ACPI Configuration


→ Suspend Mode [S1(POS)]

Use the **Suspend Mode** BIOS option to specify the sleep state the system enters when it is not being used.

5.3.5.2 APM Configuration

The **APM Configuration** menu (**BIOS Menu 10**) allows the advanced power management options to be configured.

BIOS Menu 10:Advanced Power Management Configuration

→ Restore on AC Power Loss [Last State]

Use the **Restore on AC Power Loss** BIOS option to specify what state the system returns to if there is a sudden loss of power to the system.

→	Power Off		The system remains turned off
→	Power On		The system turns on
→	Last State	DEFAULT	The system returns to its previous state. If it was on, it
			turns itself on. If it was off, it remains off.

→ Power Button Mode [On/Off]

Use the **Power Button Mode** BIOS to specify how the power button functions.

→ On/Off DEFAULT When the power button is pressed the system is either turned on or off

→ Suspend When the power button is pressed the system goes into suspend mode

Resume on Keyboard/Mouse [Disabled]

Use the **Resume on Keyboard/Mouse** BIOS option to enable activity on either the keyboard or mouse to rouse the system from a suspend or standby state. That is, the system is roused when the mouse is moved or a button on the keyboard is pressed.

→ Disabled (Default) Wake event not generated by activity on the keyboard or mouse

→ Enabled Wake event generated by activity on the keyboard or mouse

→ Resume on Ring [Disabled]

Use the **Resume on Ring** BIOS option to enable activity on the RI (ring in) modem line to rouse the system from a suspend or standby state. That is, the system will be roused by an incoming call on a modem.

→ Disabled DEFAULT Wake event not generated by an incoming call

→ Enabled Wake event generated by an incoming call

→ Resume on PCI-Express WAKE# [Enabled]

Use the **Resume PCI-Express WAKE#** BIOS option to enable activity on the PCI-Express WAKE# signal to rouse the system from a suspend or standby state.

→ Disabled Wake event not generated by PCI-Express WAKE#
signal activity

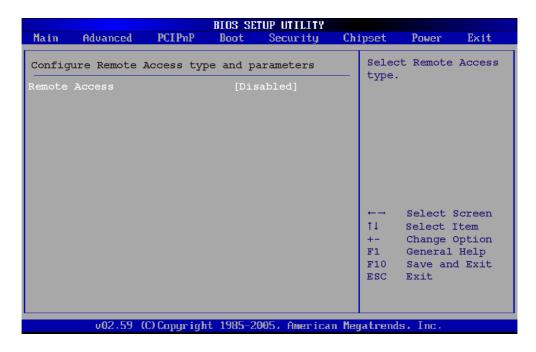
→ Enabled DEFAULT Wake event generated by PCI-Express WAKE# signal
activity

→ Resume On RTC Alarm [Disabled]

Use the **Resume On RTC Alarm** option to specify the time the system should be roused from a suspended state.

→ Disabled DEFAULT The real time clock (RTC) cannot generate a wake event

→ Enabled If selected, the following appears with values that can be selected:


→ RTC Alarm Date (Days)

→ System Time

After setting the alarm, the computer turns itself on from a suspend state when the alarm goes off.

5.3.6 Remote Configuration

Use the Remote Access Configuration menu (BIOS Menu 11) to configure remote access parameters. The Remote Access Configuration is an AMIBIOS feature and allows a remote host running a terminal program to display and configure the BIOS settings.

BIOS Menu 11: Remote Access Configuration [Advanced]

→ Remote Access [Disabled]

Use the **Remote Access** option to enable or disable access to the remote functionalities of the system.

→ Disabled DEFAULT Remote access is disabled.
 → Enabled Remote access configuration options shown below appear:
 → Serial Port Number
 → Serial Port Mode
 → Flow Control
 → Redirection after BIOS POST
 → Terminal Type

→ VT-UTF8 Combo Key Support

These configuration options are discussed below.

→ Serial Port Number [COM1]

Use the **Serial Port Number** option allows to select the serial port used for remote access.

→	COM1	DEFAULT	System is remotely accessed through COM1
----------	------	---------	--

→ COM2 System is remotely accessed through COM2

NOTE: Make sure the selected COM port is enabled through the Super I/O configuration menu.

→ Base Address, IRQ [2F8h,3]

The **Base Address**, **IRQ** option cannot be configured and only shows the interrupt address of the serial port listed above.

→ Serial Port Mode [115200 8,n,1]

Use the **Serial Port Mode** option to select baud rate through which the console redirection is made. The following configuration options are available

- 115200 8,n,1 DEFAULT
- 57600 8,n,1
- 38400 8,n,1
- 19200 8,n,1
- 09600 8,n,1

NOTE:

Identical baud rate setting musts be set on the host (a management computer running a terminal software) and the slave

→ Flow Control [None]

Use the **Flow Control** option to report the flow control method for the console redirection application.

→ None DEFAULT N	No control flow,
------------------	------------------

→ Hardware Hardware is set as the console redirection

→ Software Software is set as the console redirection

→ Redirection After BIOS POST [Always]

Use the **Redirection After BIOS POST** option to specify when console redirection should occur.

→	Disabled	The console is not redirected after POST
_	Disablea	

→ Boot Loader Redirection is active during POST and during Boot

Loader

→ Always DEFAULT Redirection is always active (Some OSes may not

work if set to Always)

→ Terminal Type [ANSI]

Use the **Terminal Type** BIOS option to specify the remote terminal type.

→	ANSI	DEFAULT	The target terminal type is ANSI

→ VT100 The target terminal type is VT100

→ VT-UTF8 The target terminal type is VT-UTF8

→ VT-UTF8 Combo Key Support [Disabled]

Use the VT-UFT8 Combo Key Support option to enable additional keys that are not provided by VT100 for the PC 101 keyboard.

The VT100 Terminal Definition is the standard convention used to configure and conduct emergency management tasks with UNIX-based servers. VT100 does not support all keys on the standard PC 101-key layout, however. The VT-UTF8 convention makes available additional keys that are not provided by VT100 for the PC 101 keyboard.

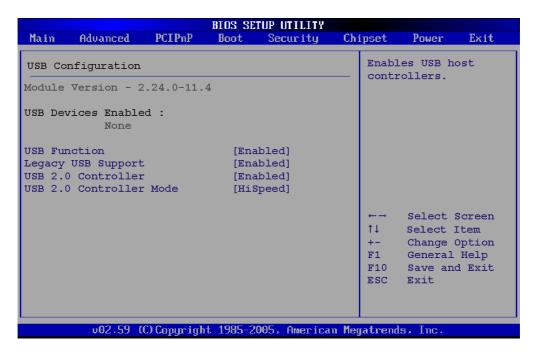
→ Disabled DEFAULT Disables the VT-UTF8 terminal keys

→ Enabled Enables the VT-UTF8 combination key. Support for ANSI/VT100 terminals

→ Sredir Memory Display Delay [Disabled]

Use the **Sredir Memory Display Delay** option to select the delay before memory information is displayed. Configuration options are listed below

■ No Delay Default


■ Delay 1 sec

■ Delay 2 sec

■ Delay 4 sec

5.3.7 USB Configuration

Use the **USB Configuration** menu (**BIOS Menu 12**) to read USB configuration information and configure the USB settings.

BIOS Menu 12: USB Configuration

→ USB Functions [Enabled]

Use the **USB Function** option to enable or disable the USB controllers.

Disabled

USB controllers are enabled

Brabled

DEFAULT

USB controllers are disabled

→ USB 2.0 Controller [Enabled]

The USB 2.0 Controller BIOS option enables or disables the USB 2.0 controller

Disabled
USB function disabled

Enabled
DEFAULT
USB function enabled

→ USB2.0 Controller Mode [HiSpeed]

The USB2.0 Controller Mode BIOS option sets the speed of the USB2.0 controller.

FullSpeed The controller is capable of operating at full speed

12 Mb/s

HiSpeed Default The controller is capable of operating at high speed

480 Mb/s

→ Legacy USB Support [Enabled]

Use the **Legacy USB Support** BIOS option to enable USB mouse and USB keyboard support.

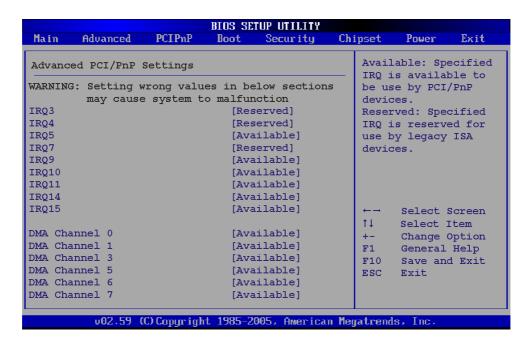
Normally if this option is not enabled, any attached USB mouse or USB keyboard does not become available until a USB compatible operating system is fully booted with all USB drivers loaded. When this option is enabled, any attached USB mouse or USB keyboard can control the system even when there is no USB driver loaded onto the system.

Disabled Legacy USB support disabled

Enabled DEFAULT Legacy USB support enabled

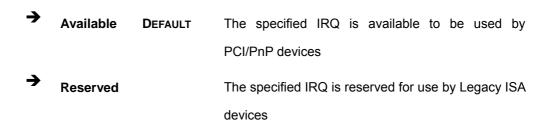
Auto Legacy USB support disabled if no USB devices are

connected


5.4 PCI/PnP

Use the PCI/PnP menu (BIOS Menu 13) to configure advanced PCI and PnP settings.

WARNING:


Setting wrong values for the BIOS selections in the PCIPnP BIOS menu may cause the system to malfunction.

BIOS Menu 13: PCI/PnP Configuration

→ IRQ# [Available]

Use the IRQ# address to specify what IRQs can be assigned to a particular peripheral device.

Available IRQ addresses are:

- IRQ3
- IRQ4
- IRQ5
- IRQ7
- IRQ9
- IRQ10

- IRQ 11
- IRQ 14
- IRQ 15

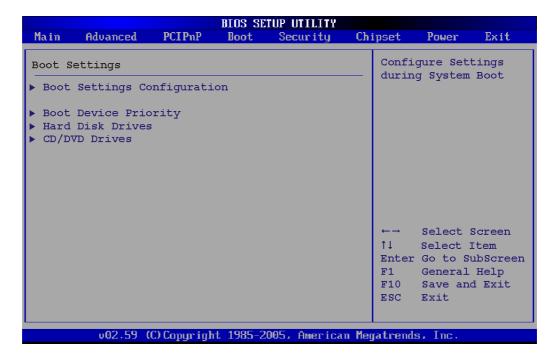
→ DMA Channel# [Available]

Use the **DMA Channel#** option to assign a specific DMA channel to a particular PCI/PnP device.

→	Available	DEFAULT	The specified DMA is available to be used by
			PCI/PnP devices
→	Reserved		The specified DMA is reserved for use by Legacy
			ISA devices

Available DMA Channels are:

- DM Channel 0
- DM Channel 1
- DM Channel 3
- DM Channel 5
- DM Channel 6
- DM Channel 7


→ Reserved Memory Size [Disabled]

Use the **Reserved Memory Size** BIOS option to specify the amount of memory that should be reserved for legacy ISA devices.

→	Disabled	DEFAULT	No memory block reserved for legacy ISA devices
→	16K		16KB reserved for legacy ISA devices
→	32K		32KB reserved for legacy ISA devices
→	64K		54KB reserved for legacy ISA devices

5.5 Boot

Use the Boot menu (BIOS Menu 14) to configure system boot options.

BIOS Menu 14: Boot

5.5.1 Boot Settings Configuration

Use the Boot Settings Configuration menu (**BIOS Menu 14**) to configure advanced system boot options.

BIOS Menu 15: Boot Settings Configuration

→ Quick Boot [Enabled]

Use the **Quick Boot** BIOS option to make the computer speed up the boot process.

→	Disabled		No POST procedures are skipped
→	Enabled	DEFAULT	Some POST procedures are skipped to decrease
			the system boot time

→ Quiet Boot [Disabled]

Use the **Quiet Boot** BIOS option to select the screen display when the system boots.

→	Disabled	DEFAULT	Normal POST messages displayed
→	Enabled		OEM Logo displayed instead of POST messages

→ AddOn ROM Display Mode [Force BIOS]

The **AddOn ROM Display Mode** option allows add-on ROM (read-only memory) messages to be displayed.

Force BIOS

DEFAULT

Allows the computer system to force a third party

BIOS to display during system boot.

**Reep Current*

Allows the computer system to display the

information during system boot.

→ Bootup Num-Lock [Off]

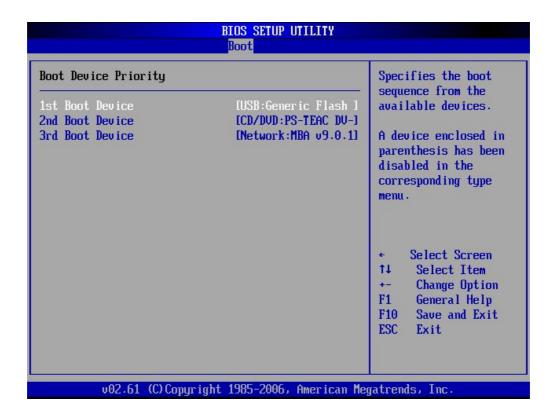
The **Bootup Num-Lock** BIOS option allows the Number Lock setting to be modified during boot up.

Does not enable the keyboard Number Lock automatically. To use the 10-keys on the keyboard, press the Number Lock key located on the upper left-hand corner of the 10-key pad. The Number Lock LED on the keyboard lights up when the Number Lock is engaged.

Allows the Number Lock on the keyboard to be enabled automatically when the computer system boots up. This allows the immediate use of the 10-key numeric keypad located on the right side of the keyboard. To confirm this, the Number Lock LED light on the keyboard is lit.

→ Boot From LAN Support [Disabled]

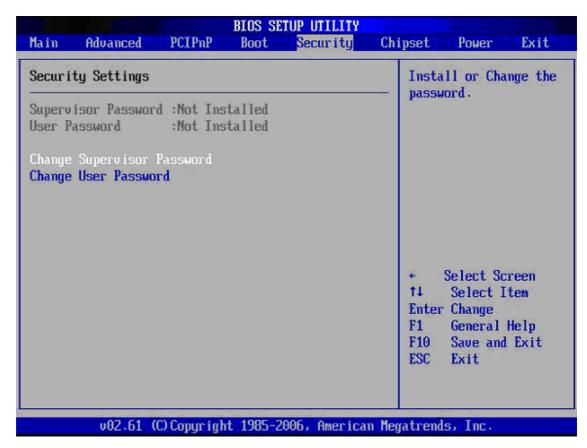
The **BOOT From LAN Support** option enables the system to be booted from a remote system.


Disabled DEFAULT Cannot be booted from a remote system through the LAN

Enabled DEFAULT Can be booted from a remote system through the LAN

5.5.2 Boot Device Priority

Use the **Boot Device Priority** menu (**BIOS Menu 16**) to specify the boot sequence from the available devices. The following options are available:


- 1st Boot Device
- 2nd Boot Device
- 3rd Boot Device

BIOS Menu 16: Boot Device Priority Settings

5.6 Security

Use the Security menu (BIOS Menu 17) to set system and user passwords.

BIOS Menu 17: Security

→ Change Supervisor Password

Use the **Change Supervisor Password** to set or change a supervisor password. The default for this option is **Not Installed**. If a supervisor password must be installed, select this field and enter the password. After the password has been added, **Install** appears next to **Change Supervisor Password**.

→ Change User Password

Use the **Change User Password** to set or change a user password. The default for this option is **Not Installed**. If a user password must be installed, select this field and enter the


password. After the password has been added, **Install** appears next to **Change User Password**.

5.7 Chipset

Use the **Chipset** menu (**BIOS Menu 18**) to access the NorthBridge and SouthBridge configuration menus

Setting the wrong values for the Chipset BIOS selections in the Chipset BIOS menu may cause the system to malfunction.

BIOS Menu 18: Chipset

5.7.1 North Bridge Chipset Configuration

Use the **North Bridge Chipset Configuration** menu (BIOS Menu 18) to configure the Northbridge chipset settings.

BIOS Menu 19:North Bridge Chipset Configuration

→ Memory Hole [Disabled]

The **Memory Hole** reserves the memory space between 15MB and 16MB for ISA expansion cards that require a specified area of memory to work properly. If an older ISA expansion card is used, please refer to the documentation that came with the card to see if it is necessary to reserve the space.

→	Disabled	DEFAULT	Memory is not reserved for ISA expansion cards
→	Enabled		Memory is reserved for ISA expansion cards

→ Internal Graphics Mode Select [Enable, 8MB]

The **Internal Graphic Mode Select** option determines the amount of system memory that can be used by the Internal graphics device.

→ Disable

Enable, 1MB 1MB of memory used by internal graphics device

→ Enable, 8MB DEFAULT 8MB of memory used by internal graphics device

→ DVMT Mode Select [DVMT Mode]

Use the **DVMT Mode Select** option to select the Intel Dynamic Video Memory Technology (DVMT) operating mode.

Fixed Mode A fixed portion of graphics memory is reserved as

graphics memory.

DVMT Mode DEFAULT Graphics memory is dynamically allocated

according to the system and graphics needs.

Combo Mode A fixed portion of graphics memory is reserved as

graphics memory. If more memory is needed,

graphics memory is dynamically allocated

according to the system and graphics needs.

→ DVMT/FIXED Memory

Use the **DVMT/FIXED Memory** option to specify the maximum amount of memory that can be allocated as graphics memory. This option can only be configured for if **DVMT Mode** or **Fixed Mode** is selected in the **DVMT Mode Select** option. If **Combo Mode** is selected, the maximum amount of graphics memory is 128MB. Configuration options are listed below.

■ 64MB

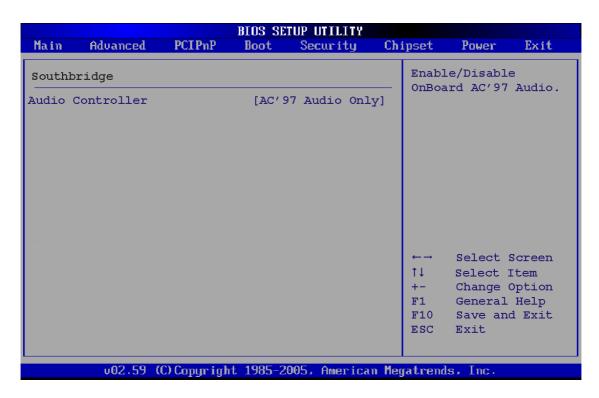
■ 128MB **D**EFAULT

■ Maximum DVMT

→ Boot Display Device [Auto]

The **Boot Display Device** BIOS option selects the display device the system uses when it boots. The available options are listed below:

- Auto **DEFAULT**
- CRT
- LFP


→ LVDS1 Panel Type

Use the **LVDS Panel Type** to determine the LCD panel resolution. Configuration options are listed below:

- 640 x 480 18b
- 800 x 480 18b
- 800 x 600 18b
- 1024 x 768 18b
- 1280 x 1024 36b
- 1400 x 1050 36b
- 1440 x 900 36b
- 1600 x 1200 36b
- by H/W

5.7.2 SouthBridge Configuration

The **SouthBridge Configuration** menu (**BIOS Menu 20**) the southbridge chipset to be configured.

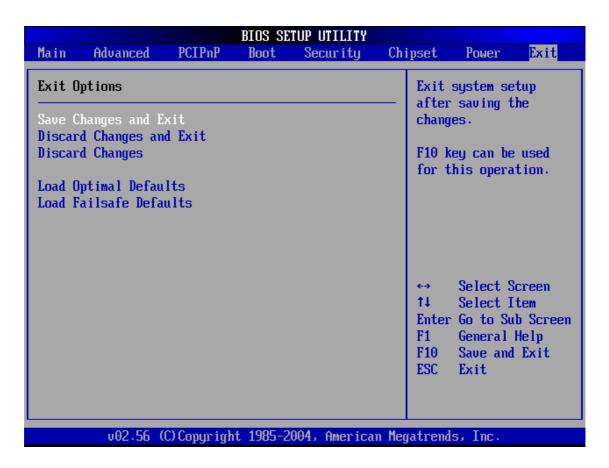
BIOS Menu 20:SouthBridge Chipset Configuration

→ Audio Controller [All Disabled]

The Audio Controller option enables or disables the audio controller.

AC'97 Audio Only

The on-board AC'97 audio controller is enabled.


All Disabled

DEFAULT

The on-board audio controller is disabled.

5.8 Exit

Use the **Exit** menu (**BIOS Menu 21**) to load default BIOS values, optimal failsafe values and to save configuration changes.

BIOS Menu 21:Exit

→ Save Changes and Exit

Use the **Save Changes and Exit** option to save the changes made to the BIOS options and to exit the BIOS configuration setup program.

→ Discard Changes and Exit

Use the **Discard Changes and Exit** option to exit the BIOS configuration setup program without saving the changes made to the system.

→ Discard Changes

Use the **Discard Changes** option to discard the changes and remain in the BIOS configuration setup program.

→ Load Optimal Defaults

Use the **Load Optimal Defaults** option to load the optimal default values for each of the parameters on the Setup menus. **F9 key can be used for this operation.**

→ Load Failsafe Defaults

Use the **Load Failsafe Defaults** option to load failsafe default values for each of the parameters on the Setup menus. **F8 key can be used for this operation.**

Chapter 6

Software Drivers

6.1 Available Software Drivers

NOTF:

The content of the CD may vary throughout the life cycle of the product and is subject to change without prior notice. Visit the TOPSCCC website or contact technical support for the latest updates.

The following drivers can be installed on the system:

- Chipset
- VGA
- LAN
- Audio

Installation instructions are given below.

6.2 Starting the Driver Program

To access the driver installation programs, please do the following.

- **Step 1:** Insert the CD-ROM that came with the system into a CD-ROM drive attached to the system.
- **Step 2:** The list of drivers in **Figure 6-1** appears.

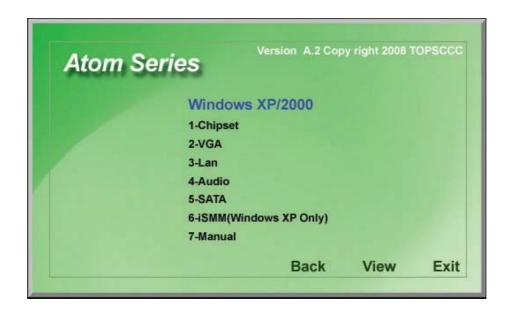


Figure 6-1: Drivers

6.3 Chipset Driver Installation

To install the chipset driver, please do the following.

Step 1: Access the driver list shown in Figure 6-1. (See Section 6.2)

Step 2: Click "1-Chipset Driver"

Step 3: The setup files are extracted as shown in **Figure 6-2**.

Figure 6-2: Chipset Driver Screen

Step 4: When the setup files are completely extracted the **Welcome Screen** in Figure 6-3 appears.

Figure 6-3: Chipset Driver Welcome Screen

Step 5: Click Next to continue.

- Step 6: The license agreement in Figure 6-4 appears.
- Step 7: Read the License Agreement.
- Step 8: Click the Yes icon to continue.

Figure 6-4: Chipset Driver License Agreement

Step 9: The Read Me file in Figure 6-5 appears.

Step 10: Click Next to continue.

Figure 6-5: Chipset Driver Read Me File

Step 11: Setup Operations are performed as shown in Figure 6-6.

Figure 6-6: Chipset Driver Setup Operations

- Step 12: Once the Setup Operations are complete, click the Next icon to continue.
- Step 13: The Finish screen appears.
- Step 14: Select "Yes, I want to restart the computer now" and click the Finish icon.

 See Figure 6-7.

Figure 6-7: Chipset Driver Installation Finish Screen

6.4 VGA Driver Installation

To install the VGA driver, please do the following.

Step 1: Access the driver list shown in Figure 6-1. (See Section 6.2)

Step 2: Click "2-VGA"

Step 3: The VGA Read Me file in Figure 6-8 appears.

Step 4: Click Next to continue.

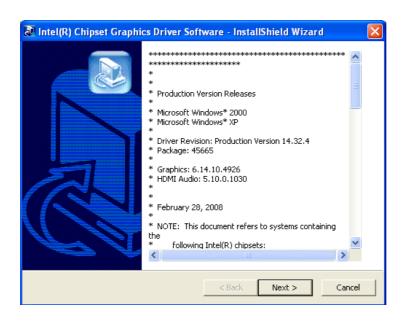


Figure 6-8: VGA Driver Read Me File

Step 5: The installation files are extracted. See Figure 6-9.

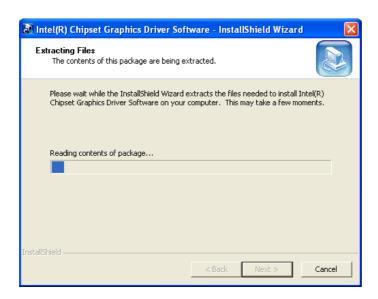


Figure 6-9: VGA Driver Setup Files Extracted

Step 6: The **Welcome Screen** in Figure 6-10 appears.

Figure 6-10: VGA Driver Welcome Screen

Step 7: Click Next to continue.

Step 8: The license agreement in Figure 6-11 appears.

Step 9: Read the **License Agreement**.

Step 10: Click the Yes icon to continue.

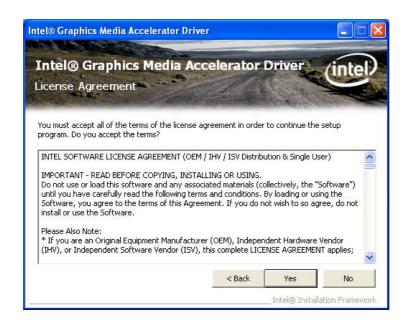


Figure 6-11: VGA Driver License Agreement

Step 11: The Read Me file in Figure 6-12 appears.

Step 12: Click Next to continue.

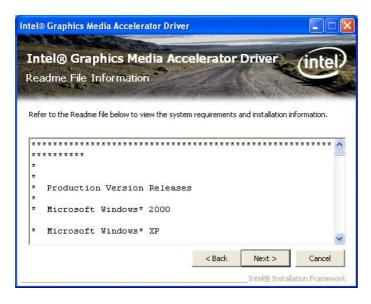


Figure 6-12: VGA Driver Read Me File

Step 13: Setup Operations are performed as shown in Figure 6-13.

Figure 6-13: VGA Driver Setup Operations

- Step 14: Once the Setup Operations are complete, click the Next icon to continue.
- **Step 15:** The **Finish** screen appears.
- Step 16: Select "Yes, I want to restart the computer now" and click the Finish icon.

 See Figure 6-14.Step 0:

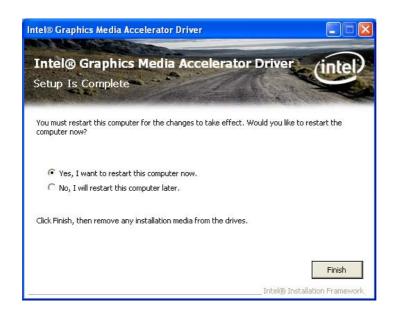


Figure 6-14: VGA Driver Installation Finish Screen

6.5 LAN Driver Installation

To install the chipset driver, please do the following.

Step 1: Access the driver list shown in Figure 6-1. (See Section 6.2)

Step 2: Click "3-LAN"

Step 3: The **Welcome** screen in Figure 6-15 appears.

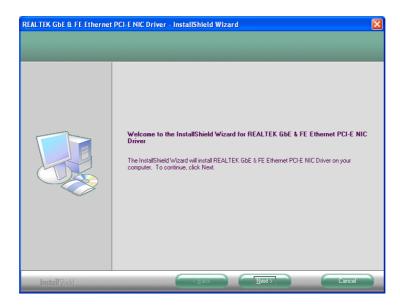


Figure 6-15: LAN Driver Welcome Screen

- Step 4: Click Next to continue.
- **Step 5:** The **Ready to Install** screen in Figure 6-16 appears.
- **Step 6:** Click **Next** to proceed with the installation.

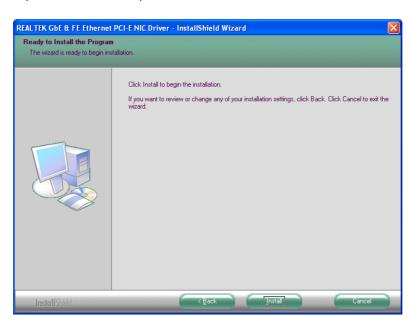


Figure 6-16: LAN Driver Welcome Screen

Step 7: The program begins to install.

Step 8: The installation progress can be monitored in the progress bar shown in Figure 6-17.

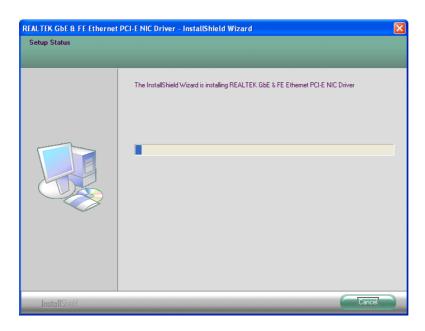


Figure 6-17: LAN Driver Installation

Step 9: When the driver installation is complete, the screen in Figure 6-18 appears.

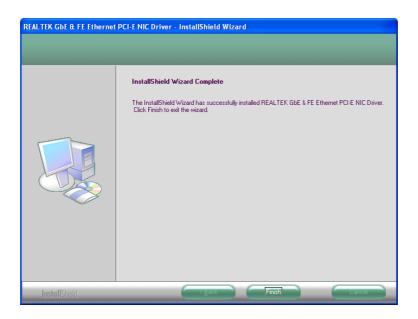


Figure 6-18: LAN Driver Installation Complete

6.6 Audio Driver Installation

To install the chipset driver, please do the following.

Step 1: Access the driver list shown in Figure 6-1. (See Section 6.2)

Step 2: Click "4-Audio"

Step 3: The screen in Figure 6-19 appears

WARNING.

The EX-9392B does not support HD Audio. Please do not install the HD Audio driver onto the EX-9392B.

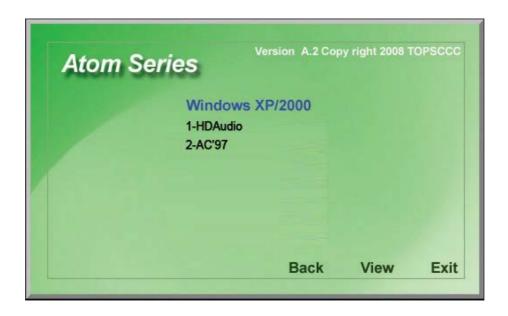


Figure 6-19: Audio Driver Options

Step 4: Select "2-AC'97" in Figure 6-19

Step 5: The installation files are extracted as shown in Figure 6-20.

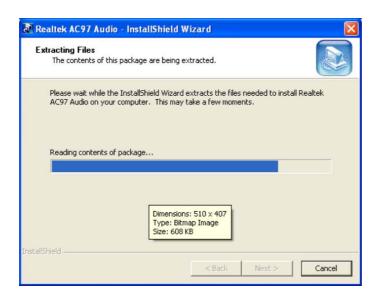


Figure 6-20: AC'97 Driver Installation File Extraction

Step 6: The AC'97 Driver Installation screen in Figure 6-21 appears.

Step 7: Click Next to continue.

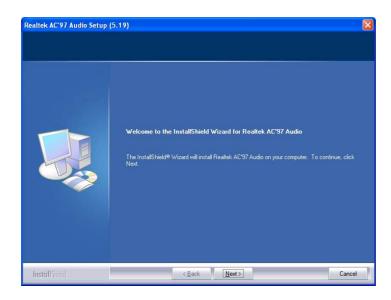


Figure 6-21: AC'97 Driver Installation Welcome Screen

Step 8: The Verification window in Figure 6-22 may appear.

Step 9: Click "Continue Anyway."

Figure 6-22: AC'97 Driver Installation Verification

Step 10: The driver installation begins. See Figure 6-23.

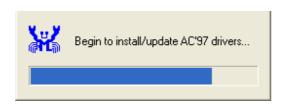


Figure 6-23: AC'97 Driver Installation

Step 11: When the driver is installed, the driver installation finish screen in Figure 6-24 appears.

Step 12: Select "Yes, I wish to restart my computer now" And click Finish

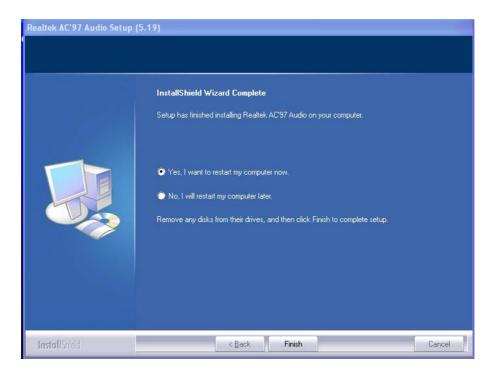


Figure 6-24: AC'97 Driver Installation Complete

Step 13: The system reboots.

Chapter 7

Troubleshooting and Maintenance

WARNING:

Take Anti-Static precautions whenever maintenance is being carried out on the system components. Failure to take anti-static precautions can cause permanent system damage. For more details on anti-static precautions, please refer to **Section 4.1**.

7.1 EX-9392B System Maintenance Overview

NOTE:

When doing maintenance operations on the system, please follow the instructions in this chapter. Failure to follow these instructions may lead to personal injury and system damage.

To preserve the working integrity of the EX-9392B embedded system, the system must be properly maintained. If embedded system components need replacement, the proper maintenance procedures must be followed to ensure the system can continue to operate normally.

7.2 System Troubleshooting

This section provides some simple troubleshooting suggestions.

7.2.1 The System Doesn't Turn On

If after turning the system on, there is no power (indicated by the power button on the front panel not turning on) please do the following:

- **Step 1:** Check that the power cable connector is properly connected to the terminal block or power socket on the system front panel.
- **Step 2:** Check that the power cable connector is properly plugged into the power source.

- Step 3: Make sure the power button is turned on.
- Step 4: Plug the system into a monitor and check to see if anything appears on the screen. If the boot-up screen appears it means the power LED has become disconnected. To fix this problem, open the top cover and reconnect the power LED to the motherboard.

If the above steps have been completed and the system still doesn't turn on, please do the following.

- Step 1: Open the bottom surface (Section 4.2.3)
- **Step 2:** Check the terminal block/power socket power cable connector is properly connected to the power module.
- **Step 3:** Check that the power button cable connector is properly connected to the motherboard.
- **Step 4:** Make sure the cable connecting to the terminal block/power socket are properly attached and have not become separated.
- **Step 5:** Make sure the cable connecting the power button to the motherboard is still properly attached to the power button and has not been separated.

7.2.2 The System Doesn't Boot Up

If the system doesn't boot up please do the following:

- **Step 1:** Check the power is turned on. See **Section 7.2.1** above.
- **Step 2:** Make sure the SO-DIMM module is properly installed.
- Step 3: Reset the system using the reset CMOS jumper.

7.2.3 More Troubleshooting

■ Nothing appears on the monitor after booting up the system: Make sure the monitor is properly connected to the system and the monitor is connected to a power supply and turned on.

WARNING!

If all troubleshooting measures have been taken and the system still fails to start, contact the TOPSCCC reseller or vendor you purchased the EX-9392B from or contact an TOPSCCC sales representative directly. To contact an TOPSCCC sales representative, please send an email to sales@topsccc.com

7.3 Component Replacement Procedure

WARNING!

Users are not advised to attempt to repair or replace any internal or external components of the EX-9392B embedded system other than those listed below. If any other components fail or need replacement, contact the TOPSCCC reseller or vendor you purchased the EX-9392B from or contact an TOPSCCC sales representative directly. To contact an TOPSCCC sales representative, please send an email to sales@topsccc.com

The embedded system components listed below can all be replaced if they fail:

- SO-DIMM module
- Internal hard disk drive (see Section 4.2.5)

7.3.1 SO-DIMM Replacement

WARNING:

Using incorrectly specified SO-DIMM may cause permanently damage the EX-9392B. Please make sure the purchased SO-DIMM complies with the memory specifications of the EX-9392B.

To replace a SO-DIMM memory module into a SO-DIMM socket, please follow the steps below.

Step 1: Remove the bottom surface panel. Place the EX-9392B on an anti-static pad with the bottom panel facing up and the bottom surface removed. (see Section 4.2.3).

Step 2: Locate the SO-DIMM (Figure 7-1).

Figure 7-1: SO-DIMM Cover Plate

- **Step 3:** Remove the SO-DIMM by releasing the arms on the SO-DIMM socket.
- Step 4: Align the new SO-DIMM with the socket. The SO-DIMM must be oriented in such a way that the notch in the middle of the SO-DIMM must be aligned with the plastic bridge in the socket (Figure 7-2).
- Step 5: Insert the SO-DIMM. Push the SO-DIMM chip into the socket at an angle

(Figure 7-2).

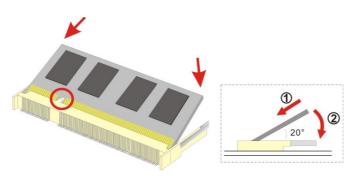


Figure 7-2: SO-DIMM Installation

- Step 6: Open the SO-DIMM socket arms. Gently pull the arms of the SO-DIMM socket out and push the rear of the SO-DIMM down. (See Figure 7-2)
- **Step 7: Secure the SO-DIMM**. Release the arms on the SO-DIMM socket. They clip into place and secure the SO-DIMM in the socket.

Safety Precautions

The precautions outlined in this chapter should be strictly followed. Failure to follow these precautions may result in permanent damage to the EX-9392B.

A.1 Safety Precautions

Please follow the safety precautions outlined in the sections that follow:

A.1.1 General Safety Precautions

Please ensure the following safety precautions are adhered to at all times.

- Follow the electrostatic precautions outlined below whenever the EX-9392B is opened.
- Make sure the power is turned off and the power cord is disconnected whenever the EX-9392B is being installed, moved or modified.
- Do not apply voltage levels that exceed the specified voltage range. Doing so may cause fire and/or an electrical shock.
- Electric shocks can occur if the EX-9392B chassis is opened when the EX-9392B is running.
- Do not drop or insert any objects into the ventilation openings of the EX-9392B.
- If considerable amounts of dust, water, or fluids enter the EX-9392B, turn off the power supply immediately, unplug the power cord, and contact the EX-9392B vendor.

■ DO NOT:

- O Drop the EX-9392B against a hard surface.
- O In a site where the ambient temperature exceeds the rated temperature

A.1.2 Anti-static Precautions

WARNING:

Failure to take ESD precautions during the installation of the EX-9392B may result in permanent damage to the EX-9392B and severe injury to the user.

Electrostatic discharge (ESD) can cause serious damage to electronic components, including the EX-9392B. Dry climates are especially susceptible to ESD. It is therefore critical that whenever the EX-9392B is opened and any of the electrical components are handled, the following anti-static precautions are strictly adhered to.

- Wear an anti-static wristband: Wearing a simple anti-static wristband can help to prevent ESD from damaging any electrical component.
- Self-grounding: Before handling any electrical component, touch any grounded conducting material. During the time the electrical component is handled, frequently touch any conducting materials that are connected to the ground.
- Use an anti-static pad: When configuring or working with an electrical component, place it on an antic-static pad. This reduces the possibility of ESD damage.
- Only handle the edges of the electrical component. When handling the electrical component, hold the electrical component by its edges.

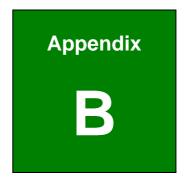
A.2 Maintenance and Cleaning Precautions

When maintaining or cleaning the EX-9392B, please follow the guidelines below.

A.2.1 Maintenance and Cleaning

Prior to cleaning any part or component of the EX-9392B, please read the details below.

- The interior of the EX-9392B does not require cleaning. Keep fluids away from the EX-9392B interior.
- Be cautious of all small removable components when vacuuming the


EX-9392B.

- Turn the EX-9392B off before cleaning the EX-9392B.
- Never drop any objects or liquids through the openings of the EX-9392B.
- Be cautious of any possible allergic reactions to solvents or chemicals used when cleaning the EX-9392B.
- Avoid eating, drinking and smoking within vicinity of the EX-9392B.

A.2.2 Cleaning Tools

Some components in the EX-9392B may only be cleaned using a product specifically designed for the purpose. In such case, the product will be explicitly mentioned in the cleaning tips. Below is a list of items to use when cleaning the EX-9392B.

- . *Cloth* Although paper towels or tissues can be used, a soft, clean piece of cloth is recommended when cleaning the EX-9392B.
- Water or rubbing alcohol A cloth moistened with water or rubbing alcohol can be used to clean the EX-9392B.
- Using solvents The use of solvents is not recommended when cleaning the EX-9392B as they may damage the plastic parts.
- Vacuum cleaner Using a vacuum specifically designed for computers is one of the best methods of cleaning the EX-9392B. Dust and dirt can restrict the airflow in the EX-9392B and cause its circuitry to corrode.
- **Cotton swabs** Cotton swaps moistened with rubbing alcohol or water are excellent tools for wiping hard to reach areas.
- **Foam swabs** Whenever possible, it is best to use lint free swabs such as foam swabs for cleaning.

TOPSCCC Embedded System Series

B.1 TOPSCCC Embedded System Series

B.1.1 Overview

TOPSCCC embedded industrial PC systems are ideal for manufacturing and automation environments where heavy processing demands exist. These systems are designed to operate effectively within high-stress environments that have diverse operational conditions. This appendix introduces the full range of TOPSCCC embedded systems.

B.1.2 TOPSCCC Embedded System Series

The embedded system series are:

- EX-9291A
- EX-9291B
- EX-9292A
- EX-9292B
- EX-9392B
- EX-9282B
- EX-9282B
- EX-94799G
- EX-94700G
- EX-9611A
- EX-9761

B.1.3 TOPSCCC Embedded System Series Variations

The differences between the series are listed below.

	Motherboard	Cooling	CompactFlash	Drive Bays
EX-9291A	EXPERT	Two cooling fans	One CF slot	None
EX-9291B	EXPERT	Fanless	One CF slot	None
EX-9292A	EXPERT	Two cooling fans	One CF slot	Two 2.5" drive bays
EX-9292B	EXPERT	Fanless	One CF slot	Two 2.5" drive bays
EX-9282B	EXPERT	Fanless	One CF slot	None
EX-9282B	EXPERT	Fanless	One CF slot	One 2.5" drive bay
EX-94799G	EXPERT	One cooling fan	None	One 2.5" drive bay
EX-94700G	EXPERT	Two cooling fans	None	One 2.5" drive bay
EX-94700G	EXPERT	Two cooling rans	None	(optional)
EX-9611A	EXMB-LX-800	Fanless	One CF slot	None
EX-9761A	-	Fanless	One CF slot	One 3.5" drive bay

Table B-1: Embedded System Series Overview

B.2 Embedded System Solutions

The different TOPSCCC Embedded System solutions are listed below. For further information, please contact an TOPSCCC distributor, reseller, vendor or TOPSCCC sales representative. Please also visit the TOPSCCC website (www.topsccc.com).

B.2.1 AMD® Geode® LX800 500MHz Solutions

All the models listed in the table below support an AMD® Geode® LX800 500MHz CPU.

Model Number	System Chipset	DC Input	Fan	Drive Bays
EX-9291AS1	AMD® CS5536	12V	Two	None
EX-9291AS1WD	AMD® CS5536	9V ~ 36V	Two	None
EX-9291BS1	AMD® CS5536	12V	None	None
EX-9291BS1WD	AMD® CS5536	9V ~ 36V	None	None
EX-9292AS1	AMD® CS5536	12V	Two	Two 2.5" HDD

Model Number	System Chipset	DC Input	Fan	Drive Bays
EX-9292AS1WD	AMD® CS5536	9V ~ 36V	Two	Two 2.5" HDD
EX-9292BS1	AMD® CS5536	12V	None	Two 2.5" HDD
EX-9292BS1WD	AMD® CS5536	9V ~ 36V	None	Two 2.5" HDD
EX-94799GA	AMD® CS5536	12V	One	One 2.5" HDD
EX-9611A	AMD® CS5536	12V	None	None

Table B-2: AMD® Geode® LX800 Embedded System Solutions

B.2.2 AMD® Geode® GX466 333MHz Solutions

All the models listed in the table below support an AMD® Geode® GX466 333MHz CPU.

Model Number	System Chipset	DC Input	Fan	Drive Bays
EX-9291AS2	AMD® CS5536	12V	Two	None
EX-9291AS2WD	AMD® CS5536	9V ~ 36V	Two	None
EX-9291BS2	AMD® CS5536	12V	None	None
EX-9291BS2WD	AMD® CS5536	9V ~ 36V	None	None
EX-9292AS2	AMD® CS5536	12V	Two	Two 2.5" HDD
EX-9292AS2WD	AMD® CS5536	9V ~ 36V	Two	Two 2.5" HDD
EX-9292BS2	AMD® CS5536	12V	None	Two 2.5" HDD
EX-9292BS2WD	AMD® CS5536	9V ~ 36V	None	Two 2.5" HDD

Table B-3: AMD® Geode® GX466 Embedded System Solutions

B.2.3 VIA® LUKE® 1GHz Solutions

All the models listed in the table below support a VIA® LUKE® 1GHz CPU.

Model Number	System Chipset	DC Input	Fan	Drive Bays
EX-9291AS3	VIA® VT8237R+	12V	Two	None
EX-9291AS3WD	VIA® VT8237R+	9V ~ 36V	Two	None
EX-9291BS3	VIA® VT8237R+	12V	None	None
EX-9291BS3WD	VIA® VT8237R+	9V ~ 36V	None	None
EX-9292AS3	VIA® VT8237R+	12V	Two	Two 2.5" HDD
EX-9292AS3WD	VIA® VT8237R+	9V ~ 36V	Two	Two 2.5" HDD

Model Number	System Chipset	DC Input	Fan	Drive Bays
EX-9292BS3	VIA® VT8237R+	12V	None	Two 2.5" HDD
EX-9292BS3WD	VIA® VT8237R+	9V ~ 36V	None	Two 2.5" HDD
EX-94799GB	VIA® VT8237R+	12V	One	One 2.5" HDD

Table B-4: VIA® LUKE® Embedded System Solutions

B.2.4 VIA® MARK® 800MHz Solutions

All the models listed in the table below support a VIA® MARK® 800MHz CPU.

Model Number	System Chipset	DC Input	Fan	Drive Bays
EX-9291AS4	VIA® VT82C686B	12V	Two	None
EX-9291AS4WD	VIA® VT82C686B	9V ~ 36V	Two	None
EX-9291BS4	VIA® VT82C686B	12V	None	None
EX-9291BS4WD	VIA® VT82C686B	9V ~ 36V	None	None
EX-9292AS4	VIA® VT82C686B	12V	Two	Two 2.5" HDD
EX-9292AS4WD	VIA® VT82C686B	9V ~ 36V	Two	Two 2.5" HDD
EX-9292BS4	VIA® VT82C686B	12V	None	Two 2.5" HDD
EX-9292BS4WD	VIA® VT82C686B	9V ~ 36V	None	Two 2.5" HDD

Table B-5: VIA® MARK® Embedded System Solutions

B.2.5 Intel[®] Celeron[®] M 1 GHz Solutions

The model listed in the table below support an Intel® Celeron® M 1 GHz zero cache CPU.

Model Number	System Chipset	DC Input	Fan	Drive Bays
EX-9392B	Intel® 945GSE +	12V or	No	One 2.5" HDD
	ICH7-M	9V~36V		

Table B-6: Intel[®] Celeron[®] M 1 GHz Solutions

B.2.6 Intel® Celeron® M 1.5GHz Solutions

All the models listed in the table below support an Intel® Celeron® M 1.5GHz CPU.

Model Number	System Chipset	DC Input	Fan	Drive Bays
EX-9291AS5X	SiS 661CX + SiS 964	12V	Two	None
EX-9291AS5XWD	SiS 661CX + SiS 964	9V ~ 36V	Two	None
EX-9292AS5X	SiS 661CX + SiS 964	12V	Two	Two 2.5" HDD
EX-9292AS5XWD	SiS 661CX + SiS 964	9V ~ 36V	Two	Two 2.5" HDD
EX-9282BSE0-CM15G	Intel® 945GSE +	12V	None	None
	ICH7-M			
EX-9282BSE0-WD-CM15G	Intel® 945GSE +	9V ~ 36V	None	None
	ICH7-M			
EX-9282BSEA-CM15G	Intel® 945GSE +	12V	None	None
	ICH7-M			
EX-9282BSEA-WD-CM15G	Intel® 945GSE +	9V ~ 36V	None	None
	ICH7-M			
EX-9282BSEB-CM15G	Intel® 945GSE +	12V	None	None
	ICH7-M			
EX-9282BSEB-WD-CM15G	Intel® 945GSE +	9V ~ 36V	None	None
	ICH7-M			
EX-9282BSE0-CM15G	Intel® 945GSE +	12V	None	One 2.5" HDD
	ICH7-M			
EX-9282BSE0-WD-CM15G	Intel® 945GSE +	9V ~ 36V	None	One 2.5" HDD
	ICH7-M			
EX-9282BSEA-CM15G	Intel® 945GSE +	12V	None	One 2.5" HDD
	ICH7-M			
EX-9282BSEA-WD-CM15G	Intel® 945GSE +	9V ~ 36V	None	One 2.5" HDD
	ICH7-M			
EX-9282BSEB-CM15G	Intel® 945GSE +	12V	None	One 2.5" HDD
	ICH7-M			
EX-9282BSEB-WD-CM15G	Intel® 945GSE +	9V ~ 36V	None	One 2.5" HDD
	ICH7-M			
EX-94799GDX	SiS 661CX + SiS 964	12V	One	One 2.5" HDD

Model Number	System Chipset	DC Input	Fan	Drive Bays
				(optional)

Table B-7: Intel® Celeron® M 1.5GHz Solutions

B.2.7 Intel® Pentium® M 1.6GHz Solutions

All the models listed in the table below support an Intel® Pentium® M 1.6GHz CPU.

Model Number	System Chipset	DC Input	Fan	Drive Bays
EX-9282BSE0-PM16G	Intel® 945GSE +	12V	None	None
	ICH7-M			
EX-9282BSE0-WD-PM16G	Intel® 945GSE +	9V ~ 36V	None	None
	ICH7-M			
EX-9282BSEC-PM16G	Intel® 945GSE +	12V	None	None
	ICH7-M			
EX-9282BSEC-WD-PM16G	Intel® 945GSE +	9V ~ 36V	None	None
	ICH7-M			
EX-9282BSE0-PM16G	Intel® 945GSE +	12V	None	One 2.5" HDD
	ICH7-M			
EX-9282BSE0-WD-PM16G	Intel® 945GSE +	9V ~ 36V	None	One 2.5" HDD
	ICH7-M			
EX-9282BSEC-PM16G	Intel® 945GSE +	12V	None	One 2.5" HDD
	ІСН7-М			
EX-9282BSEC-WD-PM16G	Intel® 945GSE +	9V ~ 36V	None	One 2.5" HDD
	ІСН7-М			

Table B-8: Intel® Pentium® M Embedded System Solutions

B.2.8 Intel® Socket 479 Pentium®/Celeron® M 2GHz Solutions

All the models listed in the table below support an Intel® Socket 479 Pentium®/Celeron® M 2GHz CPU with a 400/533MHz FSB (front side bus).

Model Number	System Chipset	DC Input	Fan	Drive Bays
EX-9291AS5S	SiS 661CX + SiS 964	12V	Two	None
EX-9291AS5SWD	SiS 661CX + SiS 964	9V ~ 36V	Two	None

EX-9292AS5S	SiS 661CX + SiS 964	12V	Two	Two 2.5" HDD
EX-9292AS5SWD	SiS 661CX + SiS 964	9V ~ 36V	Two	Two 2.5" HDD
EX-94799GDS	SiS 661CX + SiS 964	12V	One	One 2.5" HDD (optional)

Table B-9: Intel® Socket 479 Pentium®/Celeron® M Embedded System Solutions

B.2.9 LGA 775 Intel® Pentium® 4/ Pentium® D Solutions

All the models listed in the table below support a LGA 775 Intel® Pentium® 4/ Pentium® D CPU.

Model Number	System Chipset	DC Input	Fan	Drive Bays
EX-94700GE	Intel® 945G + ICH7	19V DC	Two	One 2.5" HDD (optional)
EX-94700GH	SiS 661CX + SiS 966	19V DC	Two	One 2.5" HDD (optional)

Table B-10: LGA 775 Intel® Pentium® 4/ Pentium® D System Solutions

B.2.10 Intel[®] Socket 479 Core Duo/Solo Solutions

All the models listed in the table below support an Intel® Socket 479 Core Duo/Solo CPU with a 667MHz FSB (front side bus).

Model Number	System Chipset	DC Input	Fan	Drive Bays
EX-94700GF	Intel® 945GM + ICH7M	19V DC	Two	One 2.5" HDD (optional)

Table B-11: Intel® Socket 479 Core Duo/Solo System Solutions

Appendix
C

BIOS Menu Options

C.1 BIOS Configuration Options

Below is a list of BIOS configuration options described in **Chapter 5**.

System Overvie	w	62
System Time [x	x:xx:xx]	63
System Date [xx	x/xx/xx]	63
ATA/IDE Config	urations [Compatible]	65
Legacy IDE Cha	nnels [PATA Pri, SATA Sec]	66
IDE Master and	IDE Slave	66
Auto-Detected [Orive Parameters	68
Type [Auto]	68	
ZIP	69	
LS-120	69	
LBA/Large Mode	e [Auto]	69
Block (Multi Sec	ctor Transfer) [Auto]	69
PIO Mode [Auto] 70	
DMA Mode [Aut	o]	70
S.M.A.R.T [Auto] 72	
32Bit Data Trans	sfer [Enabled]	72
Serial Port1 Add	dress [3F8/IRQ4]	73
Serial Port2 Add	dress [2F8/IRQ3]	74
Serial Port3 Add	dress [3E8]	74
Serial Port3 IRQ	[11]	74
Serial Port4 Add	dress [2E8]	75
Serial Port4 IRQ	ì [10]	75
Serial Port5 Add	dress [2F0]	75
Serial Port5 IRQ	[11]	75
Serial Port6 Add	dress [2E0]	76
Serial Port6 IRQ	ì [10]	76
CPU FAN Mode	Setting [Full On Mode]	77
CPU Temp. Limi	it of OFF [000]	78

CPU Temp. Limit of Start [020]	/9
CPU Fan Start PWM [070]	79
Slope PWM [0.5 PWM]	80
Suspend Mode [S1(POS)]	82
Restore on AC Power Loss [Last State]	83
Power Button Mode [On/Off]	83
Resume on Keyboard/Mouse [Disabled]	84
Resume on Ring [Disabled]	84
Resume on PCI-Express WAKE# [Enabled]	84
Resume On RTC Alarm [Disabled]	85
RTC Alarm Date (Days)	85
System Time 85	
Remote Access [Disabled]	86
Serial Port Number	86
Serial Port Mode 86	
Flow Control 86	
Redirection after BIOS POST	86
Terminal Type 86	
VT-UTF8 Combo Key Support	87
Serial Port Number [COM1]	87
Base Address, IRQ [2F8h,3]	87
Serial Port Mode [115200 8,n,1]	87
Flow Control [None]	88
Redirection After BIOS POST [Always]	88
Terminal Type [ANSI]	88
VT-UTF8 Combo Key Support [Disabled]	88
Sredir Memory Display Delay [Disabled]	89
USB Functions [Enabled]	90
USB 2.0 Controller [Enabled]	90
USB2.0 Controller Mode [HiSpeed]	90
Legacy USB Support [Enabled]	91

IRQ# [Available]	.92
DMA Channel# [Available]	.93
Reserved Memory Size [Disabled]	.93
Quick Boot [Enabled]	.95
Quiet Boot [Disabled]	.95
AddOn ROM Display Mode [Force BIOS]	.96
Bootup Num-Lock [Off]	.96
Boot From LAN Support [Disabled]	.96
Change Supervisor Password	.98
Change User Password	.98
Memory Hole [Disabled]1	100
Internal Graphics Mode Select [Enable, 8MB]1	101
DVMT Mode Select [DVMT Mode]1	101
DVMT/FIXED Memory 1	101
Boot Display Device [Auto]1	102
LVDS1 Panel Type1	102
Audio Controller [All Disabled]1	103
Save Changes and Exit 1	104
Discard Changes and Exit1	104
Discard Changes1	105
Load Optimal Defaults1	105
Load Faileafo Dofaults	105

Appendix
D

Watchdog Timer

The following discussion applies to DOS environment. TOPSCCC support is contacted or the TOPSCCC website visited for specific drivers for more sophisticated operating systems, e.g., Windows and Linux.

The Watchdog Timer is provided to ensure that standalone systems can always recover from catastrophic conditions that cause the CPU to crash. This condition may have occurred by external EMI or a software bug. When the CPU stops working correctly, Watchdog Timer either performs a hardware reset (cold boot) or a Non-Maskable Interrupt (NMI) to bring the system back to a known state.

A BIOS function call (INT 15H) is used to control the Watchdog Timer:

INT 15H:

AH – 6FH Sub-function:		
AL – 2:	Sets the Watchdog Timer's period.	
BL:	Time-out value (Its unit-second is dependent on the item "Watchdog	
	Timer unit select" in CMOS setup).	

Table D-1: AH-6FH Sub-function

Call sub-function 2 to set the time-out period of Watchdog Timer first. If the time-out value is not zero, the Watchdog Timer starts counting down. While the timer value reaches zero, the system resets. To ensure that this reset condition does not occur, calling sub-function 2 must periodically refresh the Watchdog Timer. However, the Watchdog timer is disabled if the time-out value is set to zero.

A tolerance of at least 10% must be maintained to avoid unknown routines within the operating system (DOS), such as disk I/O that can be very time-consuming.

NOTF:

When exiting a program it is necessary to disable the Watchdog Timer, otherwise the system resets.

Example program:

```
; INITIAL TIMER PERIOD COUNTER
W_LOOP:
      MOV
              AX, 6F02H
                              ; setting the time-out value
              BL, 30
      MOV
                               ; time-out value is 48 seconds
               15H
      INT
; ADD THE APPLICATION PROGRAM HERE
               EXIT_AP, 1
      CMP
                               ; is the application over?
      JNE
              W\_LOOP
                           ; No, restart the application
             AX, 6F02H
      MOV
                           ; disable Watchdog Timer
      MOV
              BL, O
      INT
              15H
; EXIT ;
```